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Abstract

We study from a computational standpoint several different
physical scales associated with structural features of DNA se-
quences, including dinucleotide scales such as base stacking
energy and propeller twist, and trinucleotide scales such as
bendability and nucleosome positioning. We show that these
scales provide an alternative or complementary compact rep-
resentation of DNA sequences. As an example we construct
a strand invariant representation of DNA sequences. The
scales can also be used to analyze and discover new DNA
structural patterns, especially in combinations with hidden
Markov models (HMMs). The scales are applied to HMMs
of human promoter sequences revealing a number of signif-
icant differences between regions upstream and downstream
of the transcriptional start point. Finally we show, with some
qualifications, that such scales are by and large independent,
and therefore complement each other.

Keywords: promoters, strand invariance, DNA structure,
bendability, nucleosomes

Introduction
DNA three-dimensional structure is essential to DNA func-
tion and depends on the exact sequence of nucleotides—
an effect that seems to be caused largely by interactions
between neighboring base pairs (Klug et al. 1979; Dick-
erson & Drew 1981; Hagerman 1984; Nussinov 1985;
Shapiro et al. 1986; Satchwell, Drew, & Travers 1986;
Calladine, Drew, & McCall 1988; Bolshoy et al. 1991;
Dickerson 1992; Hunter 1993; Goodsell & Dickerson 1994;
Brukner et al. 1995; Hunter 1996).

Based on different kinds of experimental data, several
models for estimating DNA structure from di- or trinu-
cleotides have been devised (Sinden 1994). Notable ex-
amples of the resulting physical scales include the stacking
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energy (Ornstein et al. 1978) and propeller twist (El Has-
san & Calladine 1996) dinucleotide scales (Table 1), and the
bendability (Brukner et al. 1995) and nucleosome position-
ing (Goodsell & Dickerson 1994) trinucleotide scales (not
shown here for lack of space, but easily found in the refer-
ences).

Table 1: Dinucleotide physical scales

Dinucleotide Stacking Energy Propeller Twist
(kcal/mole) (degrees)

AA -5.37 -18.66
AC -10.51 -13.10
AG -6.78 -14.00
AT -6.57 -15.01
CA -6.57 -9.45
CC -8.26 -8.11
CG -9.69 -10.03
CT -6.78 -14.00
GA -9.81 -13.48
GC -14.59 -11.08
GG -8.26 -8.11
GT -10.51 -13.10
TA -3.82 -11.85
TC -9.81 -13.48
TG -6.57 -9.45
TT -5.37 -18.66

Here we apply and analyze such scales from three differ-
ent standpoints that support their usefulness for a variety of
computational tasks. First, we show how the scales can be
used to provide invariant representations of DNA sequences.
Second, we show how such scales can be applied to the anal-
ysis of specific DNA sequences, using human promoter se-
quences as an example. Third, we study the independence
properties of such scales.



Invariant Representations of DNA

DNA Representation: Invariance and Compactness

Due to the complementarity of base pairs, the composition
of a piece of DNA can be specified by giving the sequence
of nucleotides in just one of the two strands. Although this
notation is simple and functional it may pose problems in
computational analysis of DNA sequences (Baldi & Brunak
1998). As an example consider promoter prediction. It is
well known that some promoter elements are functional, in-
dependently of which orientation they have. These elements
are usually binding sites for transcription factors, and such
a lack of orientation dependence may occur if the transcrip-
tion factor exerts its effect by unspecific protein-protein in-
teractions with the basal transcriptional machinery. If the
sequence of just one DNA strand in a set of promoters is pre-
sented to a prediction algorithm, the method will therefore
essentially have to learn that the binding site and its comple-
ment are the same element. It seems reasonable to expect
that recognition algorithms could benefit if this knowledge
was available explicitly rather than being buried in the data
sets. For this class of problems it would therefore be of in-
terest to develop DNA sequence encodings that are direc-
tionally invariant in the sense that a sequence and its com-
plement traversed in the same direction are encoded identi-
cally. However, some features in DNA sequences do depend
on the orientation. E.g., the orientation of a TATA-box has
an influence on the position of the transcriptional start point
and the direction of transcription (Wang, Jensen, & Stumph
1996). Thus, an encoding that is strand invariant but not di-
rectionally invariant (in the sense that a DNA sequence and
its complement are represented by the same string of sym-
bols in opposite orientations) might also be useful. Besides
the matter of invariance, the compactness of sequence en-
coding is also problematic. Thus, DNA sequences are often
presented to numerical information extraction algorithms—
such as neural networks—using a sparse but wasteful binary
encoding of the form A=(1,0,0,0), C=(0,1,0,0), etc. Sparse
encoding has proven to be superior to some compact cod-
ing schemes, presumably because it does not introduce al-
gebraic dependencies (Demeler & Zhou 1991). A less com-
pact encoding, however, typically requires more parameters
introducing a greater risk of overfitting. It seems, therefore,
that although the sparse representation has proven to be very
useful, it has certain shortcomings and it is natural to search
for alternative or complementary analog representations.

Since a di- or trinucleotide and its complement by defini-
tion have identical structural properties, the structural scales
are inherently strand invariant and may therefore be good
candidates for encoding schemes that meet the criterions
mentioned above. It is likely that such encodings will be
most successful when the quantity measured by the scale is
directly relevant for the type of information being extracted.
Most often, however, such relationships are unknown a pri-
ori and it may therefore be wise to test for them systemati-
cally. In other words, it may be useful to revisit some clas-
sical pattern recognition neural networks and retrain them
using input representations based on physical scales.

Strand Invariance
To each nucleotide in a DNA sequence corresponds a unique
stacking energy or propeller twist value, but given a stacking
energy value we can only recover a dinucleotide up to strand
symmetry. For instance, the propeller twist value of 13.10
degrees corresponds to to both AC and its reverse comple-
ment GT. Thus if we encode a nucleotide sequence by the
corresponding sequence of propeller twist values we obtain
a strand invariant encoding, except for the order of the num-
bers in the sequence1. With a small modification, however,
this provides also a mean of constructing strand invariant
representations for sequences of length greater than 2.

Consider the triplet ACT: the corresponding sequence of
propeller twist values is ( 13.10, 14.00). The inverse com-
plementary triplet on the other strand is AGT associated with
the same sequence of propeller twist values but in reverse or-
der ( 14.00, 13.10). We would like to build a representa-
tion where ACT and TGA are represented in the same way.
This is easily achieved by using two symmetric functions,
such as the sum S 27 10 and the product P 183 4.
By solving a simple quadratic equation, from the value of
S and P it is easy to recover uniquely the unordered pair

13 10 14 00 . Obviously any other pair of symmet-
ric and reversible functions would do the job and we do not
mean to imply here that S and P are necessarily the best
choice. In fact, because of the particular discrete values of
the propeller twist scale it is easy to check that a sum S is
associated with a unique unordered pair of propeller twist
values, although this requires reasonable numerical preci-
sion. As a result S alone suffice to provide a strand invariant
encoding for any trinucleotide.

General Case
Consider a sequence of n 1 nucleotides A1 An 1,
and the associated sequence of propeller twist values
a1 an . The inverse complementary sequence on

the opposite strand is Ān 1 Ā1 with the scale se-
quence an a1 . We would like to find an en-
coding E A1 An 1 E a1 an with two proper-
ties. First, it must be strand invariant in the sense that
E A1 An 1 E Ān 1 Ā1 E an a1 . Sec-
ond, we must be able to recover the sequence itself (and
its inverse complementary form) from the encoding E. We
have shown above that such encoding exists for sequences
of length 2 and 3. To extend this process, we recursively
construct the following encoding

E A1 An 1
a1 an a1an a1 ai an an i 1 E A2 An

(1)

where i (or n i 1) denotes the first position where
a2 an 1 differs from an 1 a2 . When n 2 or

n 3 the encoding is the one discussed in Section2. By
induction E A2 An is strand invariant. The functions
appearing in the first 3 positions of the encoding are all sym-
metric with respect to the mirroring operation and therefore

1There is a small exception in the base stacking energy scale
because 6.57 corresponds to CA and TG, but also to AT (which
is self-complementary)



the proposed encoding is strand invariant. To recover the
original sequence up to its strand position, suppose we are
given an encoding of the form x y z E . By induction, from
E we can recover the sequence A2 An and its inverse
complement Ān Ā2. From x and y we can recover the
unordered pair a1 an . This yields two alternative solu-
tions

a1 A2 An an and an Ān Ā2 a1
or
an A2 An a1 and a1 Ān Ā2 an

(2)

The notation uses the fact that for any nucleotide, there ex-
ist a unique left nucleotide and unique right nucleotide with
which it can form a dinucleotide with a given propeller twist
value. We can now use a1 an ai an i 1 and z to re-
cover the unordered pair a1 ai an an i 1 and use it to
break the tie in Equation 2 in favor of the first solution. The
length of this encoding grows like 3n. It is not unique nor
optimal in any sense. The usefulness of a strand invariant
encoding as an input to a neural network algorithm depends
also on other factors, such as how local, symmetric and com-
plex are the functions it uses. An example of more compact
(growing like 1.5n), local and symmetric encoding is pro-
vided by:

E a1 a2p S1 P1 Sp Pp P2
1 P2

p 1 (3)

where Si ai a2p i 1, Pi aia2p i 1, and P2
i ai

ai 1 a2p i 1 a2p i are all strand symmetric functions.
We leave as an exercise for the reader to determine the cor-
responding form for sequences of even length, and to prove
strand invariance. The same ideas apply of course to other
strand invariant scales, as well as both strand and direction
invariance, and to other types of sequences with similar in-
variances. Experiments are in progress to test whether such
invariant representations can be used to improve neural net-
work performance.

Promoter Applications
Compact Encoding: TATA Boxes

We have recently investigated the structure of a large set of
human promoters (A. G. Pedersen, P. Baldi, Y. Chauvin, and
S. Brunak, submitted) and found what appears to be a gen-
eral structural profile. Therefore, promoter prediction algo-
rithms may be one example where coding schemes based
on structural measures are relevant. Here we test whether
the bendability scale can be used to provide compact repre-
sentations of TATA box regions in conjunction with neural
network algorithms.

Data was extracted from the GenBank nucleotide
database, release 95 (Benson et al. 1997). Specifically, all
human sequences that contained at least 250 nucleotides up-
stream and downstream from an experimentally determined
transcriptional start point were extracted. Sequences con-
taining non-nucleotide symbols were excluded. Redundancy
was reduced using algorithm 2 from (Hobohm et al. 1992)
and a novel method for finding a similarity cut-off (A. G.
Pedersen, H. Nielsen and S. Brunak, in preparation). Briefly,

this method is based on performing all pairwise alignments
for a data set, fitting the resulting Smith-Waterman scores
to an extreme value distribution (Altschul et al. 1994;
Waterman 1995), and choosing a value above which there
are more observations than expected from the distribution.

In one experiment, we extracted 127 sequences with an
annotated TATA box of length between 5 and 8 nucleotides
and constructed two sets of examples consisting of windows
that are 37 nucleotides long. In one set, a window is con-
sidered positive if it has a TATA-box starting 4 nucleotides
from the left border, while in the other set a windows is con-
sidered positive if it has a TATA-box starting in the middle,
18 nucleotides from each border. The first set provides ex-
amples containing very little upstream context but enough
downstream context to include the transcriptional start point.
Negative examples were generated by keeping every fifth of
all other windows of length 37. Thus each data set consists
of 11881 examples, 127 of which are positive.

Three encoding strategies were used: (1) standard
sparse encoding [A=(1,0,0,0), C=(0,1,0,0), G=(0,0,1,0),
T=(0,0,0,1)], (2) bendability encoding, where the bendabil-
ity of a triplet is used to encode the middle nucleotide, and
(3) a combination of the two: each nucleotide is encoded in
a sparse fashion as above, but instead of 1 the bendability
value of the corresponding triplet is used, as a way of pre-
senting the network simultaneously with both types of in-
formation. For instance, A may be encoded as (0.127,0,0,0)
or ( 0.024,0,0,0) etc. Notice that the bendability encoding
used here is compact but not strand invariant.

The two data sets, encoded using either of the three meth-
ods described above, were used as input to a standard feed-
forward neural network, containing two hidden units and
one output unit representing the probability of the input win-
dow being a member of the positive class. Networks were
trained by gradient descent with a learning rate of 0.1, and
using the cross-entropy error function. Choices of architec-
ture and learning rate were determined from a number of
preliminary pilot experiments. The networks trained using
the sparse and combination encoding had 148 input units
and therefore a total of 301 parameters, including 3 thresh-
olds. The network with the bendability encoding had 37
input units, and a total of 79 parameters only, including 3
thresholds. All networks were trained on-line for a thousand
epochs. In all cases, the training performance converged be-
fore the end of the 1000 epochs, while test performance gen-
erally peaked early and then deteriorated by overfitting.

In each case, we used 6-fold cross validation to address
the overfitting problem. Specifically, examples were parti-
tioned into 6 equal subsets. For each of 6 different permu-
tations, the networks are trained on 4/6 examples (7921),
1/6 examples (1980) are used for early stopping, and per-
formance is assessed on the remaining 1/6. Thus in a typ-
ical stop or test set there are about 21 positive examples.
Overall performance is then the average of the 6 test results.
We calculate also the average of the best performance in all
12 test sets (6 stop and 6 evaluation). Performance for all
three types of encoding and both classes of positive exam-
ples was evaluated using the Mathews correlation coefficient



(Table 2, “stop” denotes performance assessed using distinct
stop and test sets).

Sparse encoding consistently performs a little better than
the other two representations (Table 2). The bendability en-
coding, however, in spite of its lack of independence actually
performs almost as well with about one fourth the number of
parameters (Table 2).

Table 2: Performance of TATA-box recognizing neural nets.
TATA at 5 TATA at 19

stop non-stop stop non-stop
Sparse 0.6719 0.7487 0.6884 0.7336
Bend 0.4887 0.5824 0.5651 0.6070
Comb 0.5328 0.6426 0.5631 0.6560

Pattern Detection: Profiles
DNA or protein scales can be effectively combined with hid-
den Markov models (HMMs) (Baldi & Brunak 1998). In
particular, any DNA scale can be convolved with the param-
eters of an HMM to produce an expected profile for the cor-
responding property. Alternatively, the scales can be applied
directly to the corresponding HMM-derived multiple align-
ment with indels.

In (Baldi et al. 1997), a new weak periodic pattern was
detected in human exon and intron DNA sequences using a
number of different HMMs. This statistical pattern is char-
acterized by the consensus pattern [non-T][A or T][G] and
a periodicity of roughly 10 nucleotides. From a structural
point of view, this periodicity is interesting since it is well
known that “bent DNA” requires a number of small individ-
ual bends that are in phase. Only when bends are phased at
approximately 10.5 bp (corresponding to one full turn of the
double helix) can stable long-range curvature be obtained.
The pattern found is related to the DNase I-derived bend-
ability trinucleotide scale (Brukner et al. 1995). (DNase I
interacts with the surface of the minor groove, and bends
the DNA molecule away from the enzyme.) In fact, five
(ATG, CAG, CTG, GAG, GTG) of the six triplets associ-
ated with the consensus pattern are found in the high end
of the bendability scale. These results are consistent with
the sequence signal having a role in nucleosome position-
ing, and it is possible that the differences that are observed
between the strength of signals in coding and non-coding re-
gions have implications for the recognition of genes by the
transcriptional machinery.

Here, a standard linear HMM architecture with length
N 500 was trained using the redundancy-reduced pro-
moter data set described above containing 625 sequences,
all with length 501, i.e., 250 nucleotides up- and down-
stream of the transcriptional start point. The training was
facilitated by initializing the main state emissions associated
with the TATA-box using consensus probabilities from pro-
moters with experimentally verified TATA-boxes. We then
computed the profile of the HMM backbone for each of the
DNA scales (Figure 1), by multiplying the HMM probabili-
ties with the scale values and averaging over a sliding win-
dow of length 21, as in (Baldi & Brunak 1998). We have

checked that the main results are robust over sliding win-
dow sizes in the range of 3 to 31. All profiles consistently
show a large signal around the transcriptional start point (po-
sition +1) with differences between the upstream and down-
stream regions. The most striking feature is a significant in-
crease in bendability in the region immediately downstream
of the transcriptional start point. As promoters most of-
ten have been characterized by a number of upstream pat-
terns and compositional tendencies, it is interesting that the
HMM alignment corresponds to structural similarity in the
downstream region of these otherwise unrelated promoter
sequences. The signature around the transcriptional start
point is not the result of conservation since the sequences are
highly variable. We also checked that randomly generated
scales do not yield a consistent signal around the transcrip-
tion start point. From a careful analysis of the sequence peri-
odicities and composition, we conjecture that the increase in
downstream bendability is related to nucleosome position-
ing and/or facilitation of interaction with other factors in-
volved in transcriptional initiation (A. G. Pedersen, P. Baldi,
S. Brunak, Y. Chauvin, submitted). Additional experiments,
including the obvious application to promoter prediction, are
in progress.

Computational Independence

All the physical DNA scales considered here (bendability,
nucleosome positioning, stacking energies, propeller twist)
show a signal around the TATA box and the start point with
differences between the upstream and the downstream re-
gions. Although these scales are obtained via completely
different experimental techniques, it is then natural to ask
whether there are any computational relationships between
the scales, and whether each one of them provides an in-
dependent element of supporting evidence or not. Con-
sider, for instance, two scales such as bendability and nu-
cleosome positioning. It is clear from their tables that the
value of one of them determines the value of the other one,
and the value of the corresponding triplet up to strand in-
variance. Thus in general a function exists that relates one
scale to another. The real question is what is the complexity
of the function. Clearly if the function is linear, the pro-
moter signals observed would be a scaled version of each
other and the second scale would not bring any new evi-
dence to the results obtained with the first. From inspection
of the plots in Figure 1, it is obvious that the relationship
is not linear. But could it have some other relatively simple
form? And how to deal with scales that belong to differ-
ent dimensions, such as dinucleotides (base stacking) ver-
sus trinucleotides scales (bendability)? Such questions can
be addressed in a number of ways such as correlation co-
efficients, and polynomial and/or neural network regression
techniques (i.e. looking at the complexity of the neural net-
work required to learn the transformation of one scale into
another). Because of the large number of possible compar-
isons, we present here a sample of our analysis. But in all
cases tested so far, we find that the physical scales are largely
uncorrelated to each other.
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Figure 1: Profile of several scales around human promoter regions derived using an HMM of length 500, with 250 positions
upstream and downstream form the transcription start site.



Dinucleotide Scale Correlations
In table 3 it is shown that the correlation between base stack-
ing and propeller twist is fairly small.

Table 3: Correlation between dinucleotide scales

Scale BS PT
Base Stacking 1 -0.293
Propeller Twist 1

Trinucleotide Scale Correlations
In the case of trinucleotide scales, we have computed all
possible correlations between 8 scales (Table 4, next page).
In addition to the bendability and nucleosome positioning
scales, we have used the positive nucleosome positioning
scale (suggested by Travers and obtained by taking the ab-
solute value of the nucleosome positioning scales), the sum
and product of the stacking energies of the two dinucleotides
associated with a given triplet, and the similar sum and prod-
uct of propeller twist values. The use of the sum and product
is of course dictated by the considerations discussed in the
first section and the need to build a bridge between dinu-
cleotide and trinucleotide scales (see also below).

Most correlation coefficients are small, with two notable
exceptions (Table 4). The sum and product of base stacking
or propeller twist values are very highly correlated ( 0.985
and 0.989). This is easily explained below. There is also
a non-trivial correlation between the nucleosome position-
ing scale and the sum or products associated with the din-
ucleotide scales ( 0.766, 0.753, 0.649, 0.661). We are
currently investigating the origin of such mild correlation.
Remarkably, such correlation is absent in the positive nu-
cleosome positioning scale. This suggests that the positive
version of the nucleosome positioning is a better tool for pro-
viding new independent evidence of a signal. It must also be
noted that such correlations were computed using a uniform
distribution across dinucleotides or trinucleotides and can be
recomputed using any compositional bias.

Correlations Between Dinucleotide and
Trinucleotides Scales
As an example, let us consider bendability and base stacking
energy. Without any other information, it may be reasonable
to make the hypothesis that they share a close relationship.
For instance the higher the energy the greater the stiffness
(or vice versa). As we shall see this is not the case.

For any triplet A1 A2 A3 there is a unique bendability B
shared by the complementary triplet on the other strand.
There is also a unique pair of stacking energies a1 and a2
up to permutation. Using the strand invariant encoding of
the first section, we see that for any one of the 32 possible
values of B, there is a unique pair S P , with S a1 a2
and P a1a2. In fact, there is a unique S and a unique P.
So now we can focus on the relationship between B and S,
and B and P (Figure 2). One can also plot B as a function of
a1 and a2 as a surface, with a symmetry around the a1 a2
plane. By looking at the plots one notices that the S B

curve is almost exactly symmetric with respect to the P B
curve (Figure 2). This is easy to explain: the stacking ener-
gies are all negative and below -1. So a very small S (i.e. a1
and a2 very negative) correspond to a very large positive P.
So we can focus on the S B curve (Figure 2).
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Figure 2: Bendability of 32 single strand triplets as a func-
tion of the sum and product of the base stacking energy of the
corresponding pair of dinucleotides. Notice the position of the
consensus triplets in the sum plot: AAG = ( 12.15, 0.081),
ATG = ( 13.14,0.134), CAG = CTG = ( 13.35 ,0.175),
GAG = ( 16.59,0.031), GTG = ( 17.08,0.040), and the TATA box
triplets: ATA = TAT = ( 10.39,0.182). The narrow maximum in
the center corresponds to TCA = TGA = ( 16.38,0.194).

By inspection, it is clear that the relationship is far from
trivial. It is certainly not linear or quadratic, but multimodal.
In connection with the promoter results, it is then useful to
look at where the triplets associated with high bendability
and with the TATA box are located. This is easily done tak-
ing the Brukner bendability scale (Brukner et al. 1995) and
tracking back the corresponding points. The highest narrow
peak in the center correspond to TCA/TGA. The rightmost
peak is associated with ATA/TAT the TATA box triplet (so
this triplet has very high bendability and very high stacking
energy, which in part explains the TATA signal). The other
peaks are associated with the 6 (rather 5) high bendability
triplets conforming to [non-T][A or T][G] and these are scat-
tered all over the spectrum of stacking energies. In other
words, the high-bendability triplets can have low, medium,



Table 4: Correlation between trinucleotide scales

Scale B NP PNP SBS PBS SPT PPT
Bendability 1 0.272 -0.0079 -0.025 0.022 0.316 -0.393
Nuc. Pos. 1 0.161 -0.766 0.753 0.649 -0.661

Pos. Nuc. Pos. 1 -0.123 0.186 -0.157 0.203
Sum Base Stack. 1 -0.985 -0.550 0.538

Product Base Stack. 1 0.541 -0.526
Sum Prop. Twist 1 -0.989

Product Prop. Twist 1

or high cumulative stacking energy.

Conclusion

We have studied from a computational standpoint several
different physical scales associated with DNA sequences, in-
cluding dinucleotide scales such as base stacking energy and
propeller twist, and trinucleotide scales such as bendabil-
ity and nucleosome positioning. We have shown that these
scales are useful as an alternative or complementary repre-
sentation of DNA sequences. As an example we have con-
structed a strand invariant representation of DNA sequences
and demonstrated the feasibility of a compact encoding for
promoter TATA box regions. The scales can be used as well
to analyze and discover new DNA patterns, especially in
combinations with hidden Markov models (HMMs). We
have applied the scales to HMMs of human promoters re-
vealing a number of significant differences between regions
upstream and downstream of the transcriptional start point.
Finally we have shown with some qualifications, that such
scales are by and large uncorrelated, and therefore comple-
ment each other. Because multiple codes (triplet, nucleo-
some positioning, etc.) are embedded in DNA, understand-
ing the flexibility of each one with respect to the constraints
posed by the others is important. Our results provide also
further evidence of the importance of the bendability code
and its flexibility with respect to other measures, such as
base stacking energy.

Finally, it must not be forgotten that the DNA scales we
have used are only a first order approximation. Evidence re-
viewed in (Dickerson 1992), for instance, suggests that the
twist angle between bases probably depends on more than
just the two adjacent bases. The exact range of the depen-
dence in fact is not really known. A better approximation
may be derived using the tetranucleotide formed by the two
bases before and after the twist angle. Unfortunately, the
structure of all possible 256 tetranucleotides is not known.
But the methods we have developed are independent of any
particular scale, approximation, or oligonucleotide length.
They are readily applicable to the new scales, tetranucleotide
and other, that will undoubtedly become available with fu-
ture progress in experimental techniques and as more struc-
tural data becomes available. Furthermore, the methods are
also applicable in conjunction with computational scales that
are parameterised and fitted to the data using neural network
representations and machine learning techniques.
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