A QUANTITATIVE STUDY OF PRUNING
BY OPTIMAL BRAIN DAMAGE

J. Gorodkin®, L.K. Hansen?, A. Krogh?, C. Svarer”, and O. Winther®

9)cONNECT. Niels Bohr Institute
Blegdamsvej 17, DK-2100 Kgbenhavn), Denmark

Y)coNNECT, Electronics Institute

Technical University of Denmark, B. 349, DK-2800 Lyngby., Denmark

SUPERrevised, June 1993

Abstract

The Optimal Brain Damage (OBD) scheme of Le Cun, Denker, and Solla, for
pruning of feed-forward networks, has been implemented and applied to the
contiguity classification problem. It is shown that OBD improves the learning
curve (the test error as function of the number of examples). By inspecting
the architectures obtained through pruning it is found that the networks with
less parameters have the smallest test error, in agreement with “Ockhams
Razor”. Based on this, we propose a heuristic which selects the smallest
successful architecture among a group of pruned networks and we show that
it leads to very efficient optimization of the architecture. The validity of the
approximations involved in OBD are discussed and it is found and they are
surprisingly accurate for the problem studied.

1 Introduction

Much attention is currently directed towards the problem of identifying optimal
application-specific neural network architectures. It is generally believed that good
generalization is associated with minimal representation and it may indeed be proven
within many models that the generalization (or test) error is decreased by removing
superfluous resources.

Pruning schemes have been successfully applied to layered neural networks [11, 12,
16, 17, 7]. Apart from the identification of more compact representations, significant
improvements in performance have been obtained. The Optimal Brain Damage
(OBD) scheme of Le Cun, Denker and Solla [12], stands out for its success in reducing
the complexity of a well-trained network for identification of hand-written ZIP-codes
[11, 12]. The method is based on the computation of the saliency of a weight, which
is an estimate of the increase in training error induced by deleting the given weight.

Recently Hassibi and Stork proposed a generalization of OBD, the Optimal Brain
Surgeon (OBS) [7, 8]. OBS was first found to perform well on a set of Boolean
problems [7], and it has later been applied to the NETtalk problem. While OBD is
based on the diagonal approximation of the second derivative matrix (the Hessian),
OBS uses the full Hessian, which makes it possible to estimate the combined effect
of pruning and retraining — assuming the second order approximation is valid,
retraining is not necessary in OBS. Because of the approximations entering OBD, it
is recommended to use it iteratively: alternating pruning of a small set of weights
followed by retraining [11]. When applied to larger problems like NETtalk, Hassibi
et al. adapted the OBS prescription to also include retraining, and reduced the
complexity of the full Hessian by a block-diagonal approximation [8].

In this study we provide some quantitative results on the performance of OBD
for Boolean classification problems. A separate presentation addresses regression
problems[15]. In the original studies [11, 12] OBD was used to prune an architec-
ture already optimized by hand (the zip-code reading network). One of the main
motivations for this work is to see if OBD can prune a large redundant and unstruc-
tured network to a near-optimal one with only a fraction of the original number of
weights.

For the contiguity classification problem we show numerically that OBD indeed
enhances the learning performance, and in particular that the learning curve (i.e.,
the generalization ability as a function of the size of the training set) is improved by
OBD. The level of generalization is higher and the learning transition, a “knee” in
the learning curve which identifies the minimum number of training examples needed
for good generalization [13], occur earlier for the networks pruned by OBD. A fully
connected network can thus be used if sufficient training examples are available, but
there is a range of training set sizes for which OBD is crucial for successful learning.
The scaling of this improvement with problem size is an open problem, .€., whether

learnability in the sense of Valiant [19] is affected by OBD.

In this work we show that OBD may be further improved by a strategy in which
a group of networks are pruned and the smallest final network picked, leading to a
dramatic improvement in generalization ability. The number of training examples
needed to perfectly learn our particular test problem consistently drops to around
100, whereas at least 200 examples are needed to obtain a fully connected network
that generalizes well. Even a majority vote among 10 fully connected independently
trained networks has a learning transition around 150 examples. This shows that
OBD is capable of finding a near-optimal network architecture in a moderate number
of trails. When the smallest of 10 networks is chosen the learning transition becomes
very sharp: with 90 examples the generalization error is around 40%, and above 100
examples it is very close to zero.

In order to check the validity of the approximations used in OBD. we compare the
estimated saliencies with the observed ones, finding surprising agreement. This is
in line with the results of Le Cun et al. on recognition of handwritten digits [12].

The paper is organized as follows: in the next section OBD is derived and some of
it’s inherent difficulties are discussed. Our specific two-layer feed forward network is
introduced in section three, and the saliency estimators are derived and discussed.
Section four contains the results of our numerical investigations of OBD. The validity
of the various approximations entering the saliency estimation is discussed. and a
result for the “monksl problem” is presented.

2 Pruning by Optimal Brain Damage

Present generalization theories [1, 5. 9, 14] estimate the test error from the training
error and model capacity. The basic idea is that the superfluous parameters allow for
too many generalizations from the training set, hence the “correct” generalization
is picked with a small probability. The design rule derived from this insight would
be:

Minimize the capacity of the network under the constraint that it is able
to implement the training set.

This strategy is often referred to as Ockhams Razor, see e.g. [16], since the above
principle is a special form of a general guideline proposed by the medieval philoso-
pher. A difficulty appears when applying the razor to problems with noise or in-
consistencies in the training set, because a certain level of the training error is
unavoidable, and in fact zero training error would lead to poor generalization abil-
ity. See [15] for a discussion of this problem in the context of non-linear regression.
Throughout this presentation we restrict ourselves to the case of a noise free teacher
that provides only correct examples.

Assuming that the network capacity is an increasing function of the number of
parameters [3], Ockhams Razor may be implemented by brute force pruning as
proposed by Thodberg [16, 17]. Alternatively, following Le Cun et al. [12], we may
attempt to estimate the saliency and use this measure for ranking the parameters as
candidates for pruning. For completeness we rederive and discuss the OBD method.

2.1 Weight saliency

Optimal Brain Damage is based on a second order approximation to the increase in
training error resulting from elimination of a weight. If the weights w; are perturbed
by éw; the change in the training error E7 is. to second order,

N N N)

8ET 1 0 Er 1 9 Ep

OB =~ 01 i _g Iy)2 — Y ’ié' - 1
' iz Owi o 25 o} o 2]‘2::12':12,;#]' Jw;0w; et (1)

where N is the number of weights in the network. The first-order term is zero if the
training has reached a minimum of E7. If deletion of only one weight is considered
(6w; = 0 for all ¢ except dw; = —wy;), the off-diagonal part of the second order term
is also zero, and all is left is

_10*Er .
which is called the saliency. Figure 1 illustrates Equation (2). In the original
work of Le Cun et al. the saliency estimator was used for deleting sets of weights
{wi|k € D}, and the cumulative increase was approximated by

6ET ~ Z S5s (3)
jeD
with the additional assumption that off-diagonal terms in the second derivative

matrix can be neglected.

If the error function is additive, i.e., Fp = 11_9 P _1 E*, where E° is the error on

example a, the diagonal elements of the second derivative matrix are given by:

PBr L[0B (R 05 () (1)
owi — pim [0V \ Ow, ave ou?

where F,, is the function implemented by the network, and V* = F,(x%) is the
output corresponding to input z®. The parameter p denotes the number of examples

in the training set. For the most commonly used cost functions the second term can
oE

be neglected since 53 is proportional to the error on example a (see below).

For the sum of squared errors Ep = -3, (y* — F,(z*))?, Equation (4) becomes

4

oFu =)\, . o [OPFu(a®)
(ij) + (y* — Fou(z®)) <—W)] (5)

J

L1y

a=1

a'w? N P

Figure 1: After training

the network is assumed to

be in a training error min-

imum (or close to it) with

o bwy . wj = wj as illustrated.
This weight is removed by

setting w; = 0. The cost

is 6 F/, which is in turn es-

timated by the saliency.

OF

where the training set consists of the p pairs of input and target (z®,y®). The
Levenberg-Marquardt approximation is invoked by Le Cun et al. [12], to drop the
second term. If the network has learned to reproduce the examples exactly, the
errors: €* = y* — F,(2®) would be zero. In general, one would expect that a well-
trained network should have “random” errors, i.¢., the ¢* would have zero mean. The
correlation between errors and the second derivative of the network-function is thus
expected to vanish for large training sets. An additional motivation for neglecting
the second term of Equation (5) is computational: the remaining first term of the
second derivative matrix is non-negative, and contains quantities already computed

during training. The final estimate of the training error increase when deleting

weight j is
1 > O?E* (OF,(z%)\"
5= 2p = (Ve)? Jw; '

(6)

If Ep is the sum of squared errors, gi—,EQ = 1.

2.2 Inherent problems in OBD

A network pruning method based on the saliencies rests on two crude assumptions.
First, the training error is assumed to be well approximated by a second order
expansion around its minimum point, even far from it. It is not difficult to think of
situations where this is not the case. Assume, for instance, that a standard sigmoid
like tanh is used as activation function for a hidden unit which saturates for most
inputs. The error surface will be very flat, and the second order expansion will
be a poor approximation. A small weight decay regularizer can be used to avoid
saturation of the sigmoids; we have found that such a technique greatly improves

the performance of OBD.

The second crude assumption is that a large increase in error before retraining
(6 Epe fore(w;)) when removing weight w; also means a large error increase after re-
training (6 Fqyfer(w;)). Again one can easily think of cases where the ranking of
weights according to ¢ Ej.fore would differ from the ranking based on 6 E, f,. Ide-
ally one would like to use the latter, and that is essentially what the methods of
Thodberg [16] and OBS [8] aim at. It is worth noting that since the error always
decreases during retraining, 6 Fpefope 1s an upper bound for 0 E, . t.€.,

6Eafter('wj) S 6Ebefore('wj)- (7)

Therefore using OBD might be a good trade-off when considering the computational
cost of the two other algorithms mentioned above.

3 OBD for a two-layer network

To learn Boolean classifications of M-dimensional binary inputs, we have chosen a
family of functions that map the M-dimensional hypercube into the reals:

F,(z%) =) Wjtanh (Z w]-k:cz) + W, (8)

ng,ny are the numbers of hidden and input units respectively, (here n; = M). The
thresholds are implemented as weights connecting to clamped units, o = 1, in the
preceding layer. The binary classification is given by the sign of the output. This is
a standard two-layer network with one linear output unit, where w;; denotes weights
from input to hidden units and W; the weights from hidden to output. The fully
connected architecture is shown in Figure 2.

For training error we use the usual sum of squares:

Er= -3 (4" = Fu(e)”. (9)

One could argue that a linear output unit is not the obvious choice for a Boolean
classification problem. The main virtue of (8) is that it allows for efficient optimiza-
tion, as shown below.

Saliencies of two different functional forms are obtained, corresponding to the two
layers of weights. The saliency of an output weight is:

1.2 ny
s;=W?=—>"tanh® [Y wja; (10)
! 2p a=1 k=0

Figure 2: Fully connected architecture (10-12-1), an active threshold is indicated by a vertical
line through the unit.

The saliency of an input-to-hidden weight is found to be:

2

1 2 n
Sik = WJQwJQkZ_ Z 1-— tanh2 Z ’w]‘kl:l?z; . (11)

D o=1 k'=0
since (z¢)* = 1 for Boolean inputs. Note that the training set output (i.e., the

specific Boolean function) only enters the saliencies implicitly through the weight
distribution of the trained network.

Magnitude based pruning, in which the weights are ranked solely according to magni-
tude, has been criticized in [12] and [7]. Such criticism can be supported by analysis
of equations (11) and (10). In the OBD context, magnitude based pruning is equiv-
alent to the assumption that the second derivative is a constant for all weights. For
the hidden to output weights, the second derivative is determined by the activation
level of the hidden unit, which need not be the same for all hidden units. The sec-
ond derivative with respect to an input-to-hidden weight includes the corresponding
output weight, which need not be the same for all hidden units either.

Note that the accumulated saliency of a deleted set of weights is an estimate of
the increase in the training error. If we adopt the standard procedure and let
the network classification be determined by the sign of the output, some problems
might tolerate significant increases in squared error, without making training set
classification errors. This observation suggests a stop criterion: in the “noise-free”
case, where all examples are correct, we prune the networks until classification errors
appear on the training set.

4 Experiments

4.1 The contiguity problem

The contiguity (or “two or three clumps”) problem was discussed in Denker et al. [5],
and used by Thodberg for testing a pruning algorithm [16]. The Boolean input field
(1) is interpreted as a one dimensional “image”, and connected clumps of +1's are
counted. Two classes of patterns are considered: those with two and three clumps.
The Boolean function is defined by assigning the output —1 to the two-clump inputs
and +1 to the three-clump inputs. In particular we study the n; = 10 case which
has a total of 792 legal input patterns of which 432 have three clumps and 360 have
two clumps. It is known that this problem can not be solved by a simple perceptron,
i.€., 1t is not linearly separable and hidden units are needed. A simple symmetric
solution is illustrated in Figure 3; only a few (shared) parameters are necessary. In
this network the hidden units work as edge-detectors. It was shown that only 20 to
30 examples are needed to obtain good generalization if this architecture is chosen

[13].

Figure 3: A sparse symmetric architecture for the contiguity problem

4.2 The simulator

The learning algorithm is based on mixed back-propagation and second order batch
mode optimization. Since we have chosen a linear output unit, the cost function
is quadratic in the hidden-to-output weights, allowing for direct optimization of
these weights by matrix inversion [2]. The weights to the hidden units are initially
adapted by batch mode gradient descent, and then refined by the second order

pseudo-Newton Rule [9]:
oFE 0*E
Aw;i(t) = —n /— : (12)
! 8w” a’wiﬂ

8

The parameter 5 is used to secure that all weight updates in the “second order
phase” lead to a decrease in the cost function. The learning rate n is initialized to
1 before each step, and iteratively diminished by powers of two until the step leads
to a decrease in the cost function. We proceed by iteration. alternating updates
between the two layers of weights.

To ensure numerical stability and to assist in the pruning procedure we add to the
cost function a small weight decay term [9]:

1 P nyg N1
E:ET+EPV:2_Z +—(ZZwk—|—ZW2) (13)
a=1 7=1 k=0

with € = 0.005. Calculating the derivatives, the update rule for the weights in the
first layer of the network is given by:

ok € 0*E €
Awji(t) = =7 (8w1,; + ;wﬂc) /(aw kj; + Z_?) : (14)
J J

The matrix inversion scheme is also regularized by the weight decay term.

In each iteration of the pruning session, learning proceeds until no further decrease
of the cost function can be obtained. The saliencies are then estimated and used to
rank the weights. In our present version of OBD we proceed as in [12], and speed
up the pruning procedure by removing several weights in each iteration (5% of the
remaining weights). After pruning, the network is retrained using the mixed second
order scheme described above. The procedure is carried out iteratively and stops
when the network cannot be retrained to zero classification errors on the training
set. This stop criterion is meaningful as long as the training set contains no false
examples.

4.3 Learning curves

Our main results are shown in figures 4-5: learning curves for a fully connected
network and networks trained and pruned using OBD. For each training set size,
ten experiments were performed with a randomly chosen (but fixed) training set and
random initial configurations of the weights. No strong dependency was observed
on the particular choice of training set.

These learning curves comply with statistical theories on generalization: an S-shaped
learning curve with a learning transition characteristic of the given problem and the
given architecture. The location of this transition is a useful measure of the suit-
ability of an architecture or an architecture optimization algorithm, to a specific
task. Figure 4 shows the learning curve for the fully connected network. The learn-
ing transition is located around 200 examples: note that even with more than 200
examples some networks perform almost as bad as random guessing. The character-
istics of the learning curve do not depend on the particular training sets chosen; the

fluctuation observed is due to the success or failure of the learning algorithm (keep
in mind that each network is error free on the given training set). The scatter in the
performance of the solutions could be stabilized by a majority vote of the ensemble
[6], as indicated by the line in the figure.

Figure 5 shows the learning curve for the pruned networks, where the learning
transition is now located at only 150 examples. The fluctuations are significant, so
the transition is not a sharp one. Picking the smallest network among the solutions
obtained results in the line shown in the figure. Although based on simple heuristics,
the strategy is remarkably stable and it produces a very sharp learning transition
just below 100 examples. Figure 6 illustrates the correlation between network size
and test error for a set of 50 networks trained on 140 examples, and it provides strong
evidence in favor of Ockhams Razor, as found by Thodberg [16]. We conclude that
OBD can be improved by a ensemble search combined with Ockhams Razor.

An example of the optimized architectures is shown in Figure 7. This particular
architecture was trained and pruned on 160 examples. It makes no errors on the
legal inputs. It is interesting to compare this network with the symmetric one
Figure 3. The solution obtained through pruning uses only eight hidden units and
36 connections (including thresholds), while the symmetric network has nine hidden
units and 37 connections. While the symmetric network is easy to interpret, it is
not at all obvious how the network of Figure 7 works. Some of the hidden units are
apparently “edge-detectors”, while others are more complex (triple input) feature
detectors, but these features are still local.

4.4 Test of the saliency estimator

A basic condition for the use of OBD is that the saliencies (10)-(11) give reliable
estimates of “true” saliencies, i.e., the increase in cost function when deleting a
weight. In Figure 8 we test the validity of the two approximations entering the
estimate of the individual saliencies. The experimental (true) saliency is plotted
versus the estimated saliency at four different stages of the pruning process for the
input-to-hidden weights. The correlation is quite remarkable for the network shown,
and the result is reproducible when using the pseudo-Newton optimization. Since
the uncertainty of the estimates is much smaller than the range of saliencies, it never
happens that weights with “large” saliencies are deleted prematurely.

We note that the uncertainty is largest for the very small and the very large salien-
cies. For the small weights the imprecision is due to numerical problems, while for
the large saliencies it is due to the non-linearity of the network. The largest error
of the saliency estimate for large saliencies is an overestimate by a factor of 2.7.
In Figure 9 the true cost function and the estimated cost function are shown for
two different weights with large saliencies and significant errors. The second order
approximation used by OBD (and by OBS) does not give an accurate description
of the cost function. Note that these weights are exceptions to the general behav-

10

0.61

0.5

Test Error Probability
=] o©
& =

o
N
T

0.1r
0 1 1 1 K 85 ¢ 8 & A
0 50 100 150 200 250 300 350

No of learning examples

Figure 4: Learning curve of a fully connected architecture (10-12-1). At each training set size
(vertical dotted lines) ten networks have been trained on the same random training set. Their test
errors are indicated by circles. The majority vote of the ensemble is shown by the line.

0.6

0.5r

o
£
T

Test Error Probability
o
w

o
N
T

0.11

L 6666660008080 ‘ ‘
0 50 100 150 200 250 300 350
No of learning examples

Figure 5: Learning curve for networks trained and pruned on the run by Optimal Brain Damage.
At each training set size (vertical dotted lines) ten networks have been trained as indicated by
circles. Picking the smallest network among the]fen leads to test errors as shown by the line.

0.6

051 b

o
'S
T
o
o]
o
O O O
00
I

Error probability
o
w
T
o
L

o
N
T
[}
|

0.1- o i

0 20 40 60 80 100
No of weights

Figure 6: Probability of test error versus number of weights in a pruned network. Fifty networks
were trained and pruned on a training set of size p = 140.

Figure 7: Optimized architecture trained on 160 randomly chosen examples. The network as it
dropped out of the simulator is shown to the left. The network to the right has been unfolded
with respect to receptive fields by a permutation of the hidden units. Solid lines indicate positive
weights, dash-dotted lines indicate negative weights. A vertical line through a unit indicates an
active threshold

ior. For the majority of weights the estimate is accurate enough to ensure correct

ranking.

The experiment has been repeated with a straight back-prop optimizer. In this case
the small saliencies are somewhat less accurately estimated, presumably because the
gradient is not exactly zero at the “local minimum”. We conclude, for the present
network, that the effect of single weight pruning is well estimated by the saliency.
Note that the off-diagonal terms do not enter the saliency for single weight deletion,

12

10 : : : 10
g
+
10™ 107
10° 10°
+
5 - -5
10 + 10
7 - 7
10 10
107 10° 10° 10 10" 107 10° 10° 10% 10"
10" 10"
10™ 10™
10° 10°
10° 10°
-7 -7
10 10
107 10° 10° 10 10" 107 10° 10° 10% 10"

Figure 8: Experimental test of OBD approximations on the contiguity problem at four different
stages in the pruning procedure: a) fully connected (145 weights), b) 104 weights, ¢) 66 weights,
and d) 42 weights. The training set consists of 200 patterns. Only input-to-hidden weights are
shown.

hence Figure 8 is testing the second order approximation to the cost function in the
given minimum and the success of the optimizer in locating it.

It is surprising to see that most of the weights of this network, have saliencies that
can be computed within the second order approximation. Inspecting equations (10)-
(11) we note that the saliencies could be small due to the saturated activities (the
hidden units saturate if the input-to-hidden weights are of large magnitude), so a
small saliency would not always mean that the weight is unimportant. For large
weights (and no weight decay) the error surface can be like a “bath tub” with steep
walls and low curvature at the bottom. This kind of surface is poorly described by a
quadratic approximation. The weight decay regularizer seems to prevent the system
from entering the flat and non-quadratic bottom of the “bath tub” leading to good
agreement between the measured and estimated saliencies in most cases.

13

2.5 ™ T T L 2.5 T T T T

Figure 9: Test of the second order approximation for two weights with high saliency and a
significant error of the saliency estimate. The second order approximation of the cost function
is shown as a dash-dotted line, while the solid line represents the actual error as function of the
given weight. In a) the estimate is overestimated by a factor of 2.7 and in b) the saliency is
underestimated by factor of 0.6. We note that the cost function is poorly approximated by the
second order approximation for both of these weights.

4.5 Experiments with the “monks problem”

The method has been tested on a few other Boolean problems. In particular the
“first monk problem” [18], also used in the OBS experiments [7].

The first monk problem (monk1) [18] was formulated within an artificial robot do-
main in which robots are described by six different attributes. Back-propagation
with weight decay showed the best performance among the considered classifiers
[18]. The monkl problem can be represented by a net with 17 inputs and one out-
put, and is defined by a total number of 432 legal examples. In [18] the training set
size was 124 examples and the number of hidden neurons was 3. With this training
set size Hassibi and Stork [7] report a net with 14 connections, while Lautrup [4]
found a net with 14 connections using back-prop with weight decay and magnitude
based pruning. For the same specifications, using back-prop, weight decay and a

14

non-linear output we have been able to find a net with only 11 connections.! The
network is shown in Figure 10 below; note that all thresholds are pruned away. So-
lutions with only two hidden units but more connections (down to 14) have been
found as well.

Figure 10: The network for monk! with 11 connections. The input-to-hidden weights have
magnitudes about 0.8. The hidden-to-output weights have magnitudes about 1.6. Solid lines
indicate positive weights, dash-dotted lines indicate negative weights.

5 Concluding remarks

We have investigated the Optimal Brain Damage scheme for pruning of feed forward
networks. In particular we have studied the problem of learning a Boolean func-
tion from examples. Since our test problem is known to be solvable by a sparsely
connected network. a fully connected network is highly redundant and a pruning pro-
cedure should be able to improve generalization. Our numerical experiments confirm
this convincingly by showing that the learning curve of the iteratively trained and
pruned network is significantly improved relative to the learning curves of fully con-
nected networks. Furthermore we have shown that it is possible to improve the
learning curve even more by chosing the smallest network among a small ensemble
of pruned solutions. This ensemble search heuristic provides a learning curve with a
remarkably sharp learning transition. much sharper than that of the fully connected
architecture.

A qualitative understanding of the success of OBD follows from the observation that
some of the underlying approximations are well satisfied. We believe that our careful
optimization scheme and the use of weight decay play important roles in achieving
these results.

'In response to our results, David Stork has informed us that monkl networks with 11 connec-
tions have been found with OBS in a new series of experiments.

15

Although OBS [7] uses a more sophisticated technique for ranking of weights, both
OBD and OBS rely on the quadratic approximation. Future studies will have to
determine whether the computational overhead is used better on OBS, on ensemble
search with more OBD networks, or on strategies that go beyond the second order
approximation.

It should also be mentioned that pruning is not necessarily the best way to optimize
the network architecture. Much work has been devoted to incremental algorithms
that build a network by gradually adding units. We believe that both constructive
and destructive methods are important, and should eventually be combined in order
to identify models with good generalization at a minimal computational cost.

Acknowledgements

We thank Jan Larsen. Benny Lautrup, Sara Solla, and David Stork for valuable
discussions. We thank David Stork for providing us with preprints of the work on
the Optimal Brain Surgeon method. Sara Solla is gratefully acknowledged for many
comments on the manuscript. This research is supported by the Danish Research
Councils for the Natural and Technical Sciences through the Danish Computational
Neural Network Center (CONNECT).

References

[1] H. Akaike, Fitting Autoregressive Models for Prediction. Annals of The Institute of
Statistical Mathematics 21, 243-347 (1969).

[2] S. A. Barton, A Matriz Method for Optimization a Neural Network
Neural Computation 3, 450-459 (1990).

[3] E. B. Baum and D. Haussler, What Size Net Gives Valid Generalization, Neural
Computation 1, 151-160 (1989).

[4] B. Lautrup, private communication.

[5] J. Denker, D. Schwartz, B. Wittner, S.A. Solla, R. Howard, L. Jackel, J. Hopfield,
Large Automalic Learning, Rule Exlraclion, and Generalization, Complex Systems
1, 877-922 (1987).

[6] L.K Hansen and P. Salamon, Neural Network Ensembles, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 12, 993-1001 (1990).

[7] B. Hassibi and D. G. Stork: Second Order Derivatives for Network Pruning: Optimal
Brain Surgeon. Preprint, NIPS 1992, in press (1992).

16

[8]

[16]

[17]

[18]

[19]

B. Hassibi, D. G. Stork, and G. J. Wolff, Optimal Brain Surgeon and General Nel-
work Pruning, in Proceedings of the 1993 IEEE International Conference on Neural
Networks, San Francisco (Eds. E.H. Ruspini et al.) pp. 293-299 (1993).

J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Compu-
tation, Addison Wesley, New York (1991).

E. Levin, N. Tishby and S.A. Solla, A Statistical Approach to Learning and General-
1zation in Layered Neural Networks, in Proc. 2nd Ann. Workshop on Computational
Learning Theory (COLT’89), eds. R. Rivest, D. Haussler, and M.K. Warmuth. San
Mateo, CA: Morgan Kaufmann, pp. 280-295 (1989), and Proceedings of the IEEE 78
1574 (1990).

Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D.
Jakel: Handwritlen Digit Recognition with a Back-Propagalion Network, in Advances
in Neural Information Processing Systems II (Denver 1989) ed. D.S.Touretzsky. San
Mateo: Morgan Kaufman, pp. 396-404 (1990)

Y. Le Cun, J.S5. Denker, S.A. Solla: Optimal Brain Damage, in Advances in Neural
Information Processing Systems II (Denver 1989) ed. D.S.Touretzsky. San Mateo:
Morgan Kaufman, pp. 598-605 (1990)

D.B. Schwartz, V.K. Samalam, S.A. Solla, and J.S. Denker, Fzhaustive Learning,
Neural Computation 2, 371-382 (1990).

S.A. Solla: Capacity Control in Classifiers for Pattern Recognizers,in ‘Neural Net-
works For Signal Processing’; Proceedings of the 1992 IEEE-SP Workshop, (Eds.
S.Y. Kung, F. Fallside, J. Aa. Sgrensen, and C.A. Kamm), IEEE Service Center,
Piscataway NJ, pp. 255-266 (1992).

C. Svarer, L.K. Hansen, and J. Larsen, On Design and Fvaluation of Tapped-Delay
Neural Network Architectures, in Proceedings of the 1993 IEEE International Confer-
ence on Neural Networks, San Francisco (Eds. E.H. Ruspini €t al.), pp. 46-51 (1993).

H.H. Thodberg, Improving Generalization of Neural Networks Through Pruning. Int.
Journal of Neural Systems 1, 317-326 (1991).

H.H. Thodberg, The Neural Information Processing System used for Pig Carcasses
Grading in Danish Slaughterhouses, preprint 1989, The Danish Meat Research Insti-
tute, Denmark.

S. B. Thrun €t al., The MONK’s Problems - A performance comparison of different
learning algorithms. Technical Report, CMU-CS-91-197 Carnegie-Mellon U. Depart-
ment of Computer Science, 1991.

L. Valiant, A theory of the learnable, Communication of the ACM 27, 1134-1142
(1984).

17

