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A better understanding of pruning methods based on a ranking of weights according to their saliency in
a trained network requires further information on the statistical properties of such saliencies. We focus
on two-layer networks with either a linear or nonlinear output unit, and obtain analytic expressions for
the distribution of saliencies and their logarithms. Our results reveal unexpected universal properties of
the log-saliency distribution and suggest a novel algorithm for saliency-based weight ranking that avoids
the numerical cost of second derivative evaluations.

1. Introduction

The problem of supervised learning in layered neural

networks is a two stage process. A choice of archi-

tecture leads to the implicit definition of an asso-

ciated parameter space {w}, which represents the

ensemble of weights whose values need to be deter-

mined in order to fully specify the network. This

parameter space is then searched so as to identify

specific parameter values w∗. The goal is to obtain

a network with low generalization error EG, a quan-

tity that measures the difference between the input–

output map implemented by the network and the

target map.

The training of feed-forward networks is usually

formulated as an optimization problem: values for

the parameters w are chosen so as to minimize a

learning error EL, defined as a sum over a set of

training examples given in the form of input–output

pairs. The extent to which low learning error results

in low generalization error is controlled by the prior

choice of network architecture; the possibility of us-

ing the information provided by the data to guide

this choice has been explored in a variety of learning

algorithms.1

Here we focus on the family of pruning al-

gorithms, based on the elimination of redundant

weights and/or neurons during the training pro-

cess. A variety of such methods has been intro-

duced in recent years, some based on the removal

of neurons2–4 and some on the removal of individ-

ual weights.5–9 The goal in either case is to con-

trol the size of the network so as to obtain the

smallest possible network compatible with learn-

ing the training set. Capacity arguments10 indi-

cate that improved generalization should result from
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this reduction in network size; for numerical exper-

iments that confirm this prediction see for example

Ref. 11. Trained networks of minimal size that im-

plement a target map are also of interest as a po-

tential tool for comparing the intrinsic complexity of

different tasks, and often provide an interpretable

rendition of the computational strategy through

which the map is implementable in a neural network

representation.12

We consider a weight pruning scheme summa-

rized as follows: the network is trained to a min-

imum of the learning error, the weight that would

cause the smallest increase in learning error if re-

moved is identified and removed, and the resulting

smaller network is retrained to reach a new minimum

of the learning error.5,6,8,9 We follow the approach of

Le Cun et al.5, who propose a second order estimate

of the saliency of each individual weight, defined as

the increase in learning error that would result from

its removal. Our goal is to characterize the expected

distribution of saliencies over the weights of a two-

layer network, an architecture that has been shown

to provide a universal approximator for the imple-

mentation of functions from an N -dimensional input

space onto a scalar output.13,14

General assumptions about the statistical prop-

erties of the input data and the weights of the trained

network allow us to calculate the distribution of the

logarithm of the saliencies, to find an unexpected

result: that the distribution is universal except for

a translation that contains all dependence on the

training data. We present the analytic derivation

of this result for two fundamental types of two-

layer networks15: one with a linear output unit and

trained through a quadratic error function, and an-

other one with a sigmoidal output unit and trained

through a logarithmic error function of the Kullback–

Leibler type. Results for a single-layer linear network

are included for comparison. Numerical simulations

are used to illustrate the validity of our assumptions

about the statistical distribution of the weights in a

trained network, and to verify our predictions about

the universal form of the saliency distribution.

An intriguing consequence of our calculations is

a novel pruning algorithm that partially justifies and

easily extends the simplest form of pruning in which

the saliency of a weight is assumed to be determined

only by its magnitude.

2. The Saliencies

The saliency of a weight in a layered neural network

is defined as the increase in learning error that would

result from its removal. Le Cun et al.5 have proposed

a second order method to estimate this increase for

networks that have been trained to a minimum of

the learning error.

The first derivative of the learning error EL is

zero at the minimum; the dominant contribution to

the saliency thus comes from the second derivatives.

Higher order contributions are neglected, and the as-

sumption that only one weight is removed at a time

is used to neglect the off-diagonal terms in the matrix

of second derivatives, to obtain

δEkL ≈
1

2

∂2EL

∂w2
k

∣∣∣∣∣
w∗

w2
k (1)

for the increase in learning error associated with the

removal of the kth weight. The saliency sk of the

kth weight is defined as this increase: sk ≡ δEkL,

and it is in this approximation fully determined by

the magnitude of the weight wk and the correspond-

ing diagonal element of the Hessian matrix of second

derivatives of the learning error evaluated at the min-

imum: w = w∗.

We are interested in layered networks that im-

plement maps from an N -dimensional input onto a

scalar output; we thus restrict ourselves to two-layer

networks with a single hidden layer of sigmoidal units

connected to one output unit, which have been shown

to be universal approximators for the implementa-

tion of such functions.13,14 We derive results for a

linear output unit and present their extension to the

case of a nonlinear output unit. Results for a single-

layer linear network are included for comparison.

The output Oµ of a two-layer network with a lin-

ear output unit under presentation of input xµ is

given by:

Oµ =
K∑
i=1

Wi tanh

 N∑
j=0

wijx
µ
j

−W0 , (2)

where xµ0 = −1 for all µ, wi0 is the threshold of

the ith hidden unit, and W0 is the threshold of the

output unit. The quantity wij refers to the weight

from the jth input unit to the ith hidden unit and
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Wi refers to the weight from the ith hidden unit to

the output unit. The number of inputs is N and the

number of hidden units is K. The equivalent expres-

sion for the case of a nonlinear output unit is:

Oµ = tanh

 K∑
i=1

Wi tanh

 N∑
j=0

wijx
µ
j

−W0

 .

(3)
We concentrate here on the saliencies for the

input-to-hidden weights; the saliencies of the hidden-

to-output weights are easily found following a sim-

ilar procedure.16 For a linear output unit we use a

quadratic error function EL = 1
2p

∑p
µ=1(yµ − Oµ)2

to measure the distance between target outputs yµ

and actual outputs Oµ. The corresponding saliencies

take the form11:

sij =
1

2
w2
ijW

2
i

1

p

p∑
µ=1

[1− tanh2(hµi )]2(xµj )2 , (4)

where the notation hµi =
∑N
j=0 wijx

µ
j is introduced

to indicate the activation of the ith hidden unit un-

der presentation of the µth example. For a nonlinear

output unit we use the Kullback–Leibler entropy17

as the error function; for output units confined to

the [−1, +1] interval through a nonlinearity of the

“tanh” type, the error is written as: EL = 1
2p

∑p
µ=1

[(1 + yµ) log 1+yµ

1+Oµ + (1 − yµ) log 1−yµ
1−Oµ ]. The corre-

sponding saliencies take the form16:

sij =
1

2
w2
ijW

2
i

1

p

×
p∑

µ=1

[1− tanh2(Hµ)][1− tanh2(hµi )]2(xµj )2 ,

(5)

where Hµ is the activation of the output unit un-

der the presentation of the µth example, a quantity

equal to the output Oµ of the network with a linear

output unit, Eq. (2).
It is the logarithm of these saliencies that we now

evaluate.

3. The Distribution of Saliencies and

Their Logarithms

Our analysis of the statistical properties of the salien-

cies of a trained layered network is based on simple

assumptions about the statistical properties of the

corresponding weights.

A simultaneous sign change of all weights in ei-

ther network (2) or network (3) leaves the output in-

variant; this symmetry leads to the assumption that

the probability distribution for individual weights

is symmetric around zero and has zero mean. We

choose a Gaussian approximation to the distribution

of weights in the trained network. This further as-

sumption is well supported by numerical evidence

obtained through the training of layered networks ar-

chitecturally too large for the implementation of the

target map. Consider the shape of the surfaceEL(w)

near the minimum at w = w? for such a network: the

surface remains essentially flat in a significant inter-

val around w? along those directions corresponding

to redundant parameters. Gradient-descent weight

updates in the vicinity of the minimum thus result

in stochastic variations, which are almost uncorre-

lated from one time step to the next and add up

to weights that are normally distributed. Numerical

experiments support this picture and indicate that

the Gaussian character of the weight distribution in-

creases with increasing learning time in the vicinity

of the minimum.
If the weight distribution has finite covariance

matrix, and the individual components xµj of the

p input patterns are independently drawn from a

distribution P (x), the central limit theorem can be

invoked to argue that the activation hµi of the ith

hidden unit under presentation of the µth pattern

is a normally distributed random variable with zero

mean and variance σ2
h = (N + 1)σ2

wσ
2
x, where σ2

w is

the variance of the input-to-hidden weights and σ2
x

stands for (N + 1)−1
∑N
j=0(xµj )2, independent of µ.

Correlations 〈hµi x
µ
j 〉 vanish for weights wij that are

stochastic variables with zero mean.
We now concentrate on the case of a two-layer

network with a linear output unit and compute the

saliencies in Eq. (4) and the distribution of their log-

arithms. We have applied similar arguments to ana-

lyze the case of a two-layer network with a nonlinear

output unit; the corresponding results are summa-

rized as we go along.
In the case of a linear output unit, consider the

quantity

Q =
1

2p

p∑
µ=1

[1− tanh2(hµ)]2(xµ)2 . (6)

The statistical properties of this stochastic variable

are independent of i and j; the fluctuations of this
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single stochastic variable assign different values of Q

to different input-to-hidden weights. It is useful to

write Q = (1/p)
∑p
µ=1 v

µ, and note that different

terms vµ are uncorrelated, as the statistical inde-

pendence of the input patterns guarantees that both

the x’s and the h’s are uncorrelated from example

to example. It then follows that 〈Q〉 = 〈v〉 and

σ2
Q = (1/p)σ2

v. The relative variance

σQ

〈Q〉 ∼
1
√
p
→ 0 as p→∞ . (7)

As the number p of examples grows the fluctua-

tions of Q around its mean 〈Q〉 become negligible;

in this limit the stochastic variable Q becomes self-

averaging and it can be replaced by 〈Q〉. The salien-

cies in Eq. (4) can then be written as

sij = w2
ijW

2
i 〈Q〉 . (8)

The same argument applies to the case of a nonlinear

output unit; it suffices to redefine

Q =
1

2p

p∑
µ=1

[1− tanh2(Hµ)][1− tanh2(hµ)]2(xµ)2 ,

(9)

to show that the saliencies in Eq. (5) can also be

written in the form of Eq. (8).

Equation (8) thus provides a compact expression

for the input-to-hidden saliencies sij for two-layer

networks with either a linear or nonlinear output

unit. Since the value of 〈Q〉 is independent of i and

j, all the information needed to rank these weights

by order of increasing saliency is contained in the

product of the magnitude of two weights: wij and

Wi. This result reveals a simple way of implement-

ing OBD in a two-layer network; it improves upon

simple pruning schemes based on ranking weights ac-

cording to only their own magnitude, and also avoids

the numerical cost associated with the computation

of second derivatives.

Hidden-to-output saliencies si, labeled only by

the index i of the corresponding weight Wi, are eas-

ily shown16 to be proportional to W 2
i , with a self-

averaging proportionality factor that is independent

of i. Pruning according to a saliency-based ranking

thus reduces for the hidden-to-output weights of a

two-layer network to a simple magnitude-based prun-

ing scheme.

The evaluation of the saliencies in Eq. (8) re-

quires the computation of the parameter 〈Q〉 =

∫∞
−∞ dQ Q P (Q), which contains explicit informa-

tion about the data. In the case of a linear output

unit, the pertinent distribution is

P (Q)=

∫ ∞
−∞

p∏
µ=1

dhµdxµP (hµ)P (xµ)

× δ
(
Q− 1

2p

p∑
µ=1

[1− tanh2(hµ)]2(xµ)2

)
,

(10)

with

P (h) =
1√

2πσh
exp

[
− h2

2σ2
h

]
. (11)

The corresponding value of 〈Q〉 can be easily cal-

culated in the regimes σ2
h � 1 and σ2

h � 1 (see

Appendix A), to obtain (2σ2
x)/(3

√
2πσh) and σ2

x/2,

respectively.

A similar analysis yields an expression for 〈Q〉 in

the case of a nonlinear output unit (see Appendix A);

it depends not only on the variance σh for the activa-

tion of the hidden units but also on the variance σH
for the activation of the output unit. Asymptotic re-

sults are (2σ2
x)/(3πσhσH) in the large variance limit

and σ2
x/2 in the small variance limit.

We now turn to calculating the distribution for

the logarithm of the saliencies; the reason for focus-

ing on the logarithm of the saliencies rather than

the saliencies themselves will become clear in the

process. Consider the logarithm of the saliencies in

Eq. (8)

z = log s = logw2W 2〈Q〉 , (12)

where indices ij identifying a specific input-to-

hidden weight are omitted for simplicity. We are

interested in the distribution

P (z) =

∫ ∞
−∞

dw

∫ ∞
−∞

dW

× δ(z − logw2W 2〈Q〉)Pw(w)PW (W ) , (13)

with PW and Pw given by

Pw(w) =
exp[−w2/(2σ2

w)]√
2πσw

,

PW (W ) =
exp[−W 2/(2σ2

W )]√
2πσW

.

(14)

The resulting Gaussian integrals can be performed

(see Appendix B) to obtain16:

P (z) =
α(z)

π
K0(α(z)) , (15)
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where K0 is the modified Bessel function of the sec-

ond kind of order zero and

α(z) =

√
ez

〈Q〉
1

σwσW
=
√

exp(z − log σ2
wσ

2
W 〈Q〉) .

(16)

This result follows from Eq. (8) and is thus valid for

a two-layer network with either a linear or nonlinear

output unit; the character of the output unit simply

selects the appropriate form for 〈Q〉, as discussed in

Appendix A.

Note that a change in 〈Q〉 only contributes in a

translation along the z-axis; the distribution for the

logarithm of the saliencies has a shape which is uni-

versal in that it is independent of the data and thus

of the task that the network is being trained for! The

shape of the distribution is shown in Fig. 1.

The distribution of saliencies can be found

through a similar procedure, to obtain16:

P (s) = α1(s)K0(α2(s)) , (17)

with α1(s) = [2πσ2
wσ

2
W

√
〈Q〉s]−1 and α2(s) =

(σW /σw)
√
s/〈Q〉. Note that a change in 〈Q〉 re-

sults in a change of the actual shape of the saliency

distribution.

For comparison we quote here the corresponding

results for a single-layer linear network with no hid-

den units. A similar but simpler calculation16 leads

to results for the distribution of the saliencies s and

their logarithms z:

P (z) =
α(z)√
π

exp(−α2(z)) , (18)

with

α(z) =

√
ez

σ2
x

1

σw
=
√

exp(z − log σ2
xσ

2
w) , (19)

and

P (s) = α1(s) exp(−α2(s)) , (20)

with α1(s) = [σw
√
πs ]−1 and α2(s) = (1/σw)

√
s/2.

For this simple architecture it is necessary to con-

sider the possibility 〈w〉 6= 0; the corresponding cal-

culations can be carried through,16 and the results

reveal a scaling of both height and width of the dis-

tribution P (s) with 〈w〉.

4. Numerical results

We now present numerical experiments on two-

layer networks that justify our assumption of zero-

mean normally distributed trained weights.16 The

saliencies s associated with the various weights are

computed for the trained network following the

original prescription by Le Cun et al. as summa-

rized in Eq. (1). The corresponding distribution

P(z)

z

Fig. 1. Distribution of the logarithm of the saliencies z for the input-to-hidden weights of a two-layer network with a
linear output unit. P (z) is shown for σh � 1, with σw = σW = 0.2 and σx = 1, as is the case for ±1 binary input
components.
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for the logarithms z = log s of the saliencies is
found to be in good agreement with our theoretical
predictions.

Numerical experiments reported here are for the
contiguity problem,18,19 in which strings of N bi-
nary components ±1 are classified into categories

according to the number of contiguous clumps of
+1’s present in the pattern. The problem is sim-
plified into a dichotomy by focusing on patterns
that contain either only two such clumps (to be
mapped onto an output of −1) or three such clumps
(to be mapped onto an output of +1). Here

Fig. 2. The weight distribution P (w) and log-saliency distribution P (z) for the input-to-hidden weights of a two-layer
neural network with N = 10 input units and K = 40 hidden units trained on the contiguity problem. Histograms based
on data for all 400 input-to-hidden weights are shown 10 iterations after reaching the minimum of the learning error
[(a) and (b)], 4000 iterations after reaching the minimum [(c) and (d)], and 20000 iterations after reaching the minimum
[(e) and (f)]. The variance σ2

w of the trained weight distribution is indicated in each case.
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Fig. 3. The variance of the final weight distribution as a function of the variance of the initial weight distribution in
two regimes: (a) σ2

init ∈ [0, 0.1] and (b) σ2
init ∈ [0, 1]. Data for the trained network has been taken 1000 iterations after

reaching the minimum of the learning error.

we consider N = 10; out of a total of 1024 possible

patterns we only consider 792, of which 330 belong to

the two-clump category and 462 to the three-clump

category.
We randomly select a training set of size p = 79

and use it to train a two-layer nonlinear network as

described by Eq. (3), with K = 40 hidden units and

481 parameters to be determined by training. Learn-

ing proceeds by gradient-descent on an error function

of the Kullback–Leibler type. Target values are cho-

sen at ±0.9 instead of ±1 to avoid saturation effects

that conspire against the validity of the second order

approximation of Eq. (1).
Numerical results are shown in Fig. 2 for a

training session in which weights were initially

drawn from a uniform distribution in the interval

[−1/
√
N, 1/

√
N ], with 〈w〉 = 0 and σ2

w = 0.033.

The weight distribution P (w) and log-saliency distri-

bution P (z) were measured upon reaching the mini-

mum of the learning error [Figs. 2(a) and 2(b)], after

4000 additional iterations of the gradient-descent al-

gorithm [Figs. 2(c) and 2(d)], and again after 20000

additional iterations [Figs. 2(e) and 2(f)]. No weights

were pruned; the histograms shown in Fig. 2 gather

the information contained in all 400 input-to-hidden

weights.
Similar results are obtained if the initial weights

are drawn from a zero-mean Gaussian as opposed to

a uniform distribution.16 Numerical results shown in

Fig. 3 reveal a linear correlation between the initial

and final values of σ2
w.

5. Summary

Simple assumptions about the statistical properties

of weights in a trained two-layer network are sup-

ported by numerical evidence and used here to pre-

dict the expected distribution of saliencies. Ranking

of weights according to their post-training saliency

is a crucial ingredient of pruning algorithms such as

Optimal Brain Damage; for the case of a two-layer

network our results provide a simple algorithm for

implementing this prescription without the compu-

tational cost associated with second-derivative eval-

uations. An unexpected outcome of our calculations

is the finding of a universal shape for the distribution

of the logarithms of the saliencies. The discovery of

a task-independent profile for P (z) leaves open the

question of how to utilize the information contained

in the data to formulate a stopping criterion for the

pruning process.
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Appendix

A. The Mean 〈Q〉
We now calculate 〈Q〉 =

∫∞
−∞ dQQP (Q), as needed to evaluate the saliencies in Eq. (8). In the case of a linear

output unit:

〈Q〉 =

∫ ∞
−∞

dQQ

∫ ∞
−∞

p∏
µ=1

dhµdxµP (hµ)P (xµ) δ

(
Q− 1

2p

p∑
µ=1

[1− tanh2(hµ)]2(xµ)2

)

=

∫ ∞
−∞

p∏
µ=1

dxµP (xµ)

∫ ∞
−∞

p∏
µ=1

dhµP (hµ)

∫ ∞
−∞

dQQδ

(
Q− 1

2p

p∑
µ=1

[1− tanh2(hµ)]2(xµ)2

)

=

∫ ∞
−∞

p∏
µ=1

dxµP (xµ)

∫ ∞
−∞

p∏
µ=1

dhµP (hµ)
1

2p

p∑
ν=1

[1− tanh2(hν)]2(xν)2

=
1

2p

∫ ∞
−∞

p∏
µ=1

dxµP (xµ)

p∑
ν=1

(xν)2

∫ ∞
−∞

p∏
µ=1

dhµP (hµ)[1− tanh2(hν)]2

=
1

2
σ2
x

∫ ∞
−∞

dh√
2πσh

e
− 1

2
h2

σ2
h [1− tanh2(h)]2 ,

(21)

with σ2
x =

∫∞
−∞ dxP (x)x2, as before.

This integral is easily evaluated in two limits. For σ2
h � 1, expand exp[− 1

2
h2

σ2
h

] ≈ 1 − h2/(2σ2
h), and use

1− tanh2(h) = d tanh(h)/dh to obtain∫ ∞
−∞

dh√
2πσh

[1− tanh2(h)]
d tanh(h)

dh
=

1√
2πσh

∫ 1

−1

dh̃(1− h̃2) =
4

3

1√
2πσh

, (22)

and

〈Q〉 =
2

3

σ2
x√

2πσh
+O((σh)−3) . (23)

For σh � 1, substitute h̃ = h/σh, to obtain∫ ∞
−∞

dh̃√
2π

e−
1
2 h̃

2

[1− tanh2(h̃σh)]2 ≈
∫ ∞
−∞

dh̃√
2π

e−
1
2 h̃

2

= 1 , (24)

and

〈Q〉 =
1

2
σ2
x . (25)

In the case of a nonlinear output unit,

〈Q〉 =

∫ ∞
−∞

dQQ

∫ ∞
−∞

p∏
µ=1

dHµdhµdxµP (Hµ)P (hµ)P (xµ)

× δ
(
Q− 1

2p

p∑
µ=1

[1− tanh2(Hµ)][1− tanh2(hµ)]2(xµ)2

) (26)

leads to

〈Q〉 =
1

2
σ2
x

∫ ∞
−∞

dH dhP (H)P (h)[1− tanh2(H)][1− tanh2(h)]2 , (27)

where both P (H) and P (h) are normal distributions with zero mean and variances σ2
H and σ2

h, respectively.
As before, these integrals are easily evaluated in two limits. For σ2

H � 1 and σ2
h � 1 we obtain

〈Q〉 =
2

3π

σ2
x

σHσh
, (28)
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while for σ2
H � 1 and σ2

h � 1 the result is again

〈Q〉 =
1

2
σ2
x . (29)

B. The Distribution P (z)

We now calculate the distribution P (z) for the loga-

rithm z = log s of the saliencies,

P (z) =

∫ ∞
−∞

∫ ∞
−∞

dw dW

× δ(z − logw2W 2〈Q〉)Pw(w)PW (W ) . (30)

In order to perform the integral over w we note

that the zeroes of the argument of the delta function

occur at w = ±wo, with wo =
√

ez/(W 2〈Q〉). Thus

δ(z − logw2W 2〈Q〉) =
wo

2
[δ(w + wo) + δ(w − wo)]

(31)

and

P (z) =
1

2

∫ ∞
−∞

dWwoPW (W )

∫ ∞
−∞

dwPw(w)

× [δ(w + wo) + δ(w − wo)]

=

√
ez

〈Q〉

∫ ∞
−∞

dW

|W |PW (W )Pw

(√
ez

W 2〈Q〉

)
,

(32)

based on the parity Pw(w) = Pw(−w). Since PW (W )

is also an even function,

P (z) = 2

√
ez

〈Q〉

∫ ∞
0

dW

W
PW (W )Pw

(√
ez

W 2〈Q〉

)

=

√
ez

〈Q〉
1

2πσwσW

∫ ∞
0

dW

× 2

W
exp

[
−1

2

(
ez

σ2
wW

2〈Q〉 +
W 2

σ2
W

)]
.

The change of variables W 2 =
√

ez/〈Q〉(σW /σw)V

leads to

P (z) =
α(z)

2π

∫ ∞
0

dV

V
exp

[
−1

2
α(z)

(
1

V
+ V

)]
,

(33)

with

α(z) =

√
ez

〈Q〉
1

σwσW
, (34)

The integral is rewritten in terms of u = logV ,

P (z) =
α(z)

2π

∫ ∞
−∞

du exp[−α(z) cosh(u)] (35)

and identified as a modified Bessel function of the

second kind:

K0(x) =

∫ ∞
0

du e−x cosh(u) (36)

to obtain

P (z) =
α(z)

π
K0(α(z)) . (37)
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