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Abstract: Genome annotation relies to a large extent on the recogrofilomologs
to already known genes. The starting point for such protoisoh collection of known
sequences from one or more species, from which a model isrooted — either auto-
matically or manually — that encodes the defining features sihgle gene or a gene
family. The quality of these models eventually determiresguccess rate of the ho-
mology search. We propose here a novel approach to modetgctisn that not only
captures the characteristic motifs of a gene, but are algestadthe search pattern
by including phylogenetic information. Computationalttedemonstrate that this can
lead to a substantial improvement of homology search models

I ntroduction

Homology search is one of the generic important tasks imbBioinatics. It is indispens-
able, e.g., for the assessment of the phylogenetic disimibof genes and gene families
and it forms the basis for detailed phylogenetic analysgeireral. Homology search also
comprises the first step in gene annotation pipelines. Tke ieereasing influx of ge-
nomic sequence data makes reliable and automated homaagshsa crucial bottleneck
in many projects.

Typically, the starting point for homology search is a cafien of known sequences, usu-
ally in the form of a multiple sequence alignment. Then, onalbof these “seed se-
quences” are fed into a pairwise alignment algorithm — sichlaast [MMO04] — and
compared to the sequence database of the target speciegnincases, e.g. for distant



homologs or short query sequences, the sensitivity of ghgaach is too low. In such
cases one can determine from the alignment the sites tha gteasame residues in all or
most of the seed sequences. These highly conserved sedieaoke typically comprise
the specific biological function of the gene — like bindingesiotifs, catalytically active
sites, or structural elements. Once identified, these Bloak be used to build a more so-
phisticated search pattern that contains the intrinsipgnes of this particular gene. The
f r agr ep approach, for instance, represents the query as a colieatishort consensus
patterns and distance constraints between them [MSS06&inAgestricting oneself to
the consensus sequence information of the blocks may leaddther low sensitivity or
specificity of the search pattern. This is the case e.g. fohDNding sites [Sto00], which
not necessarily share a common consensus sequence.

More expressive sequence models can be build with posipegific scoring matrices
(PSSM), which record the relative frequencies of residaeseh site. The application of
PSSMs for homology search requires more elaborate praifiierabnt algorithms. An ex-
ample for proteinsipsi - bl ast [AMS+97]. For short, ungapped, PSSMs arising e.g. as
models of transcription factor binding sites, a relativerstg scheme is used [KGR3],
which can be extended to the gapped case by means of fragiimgaamming [MCS07].
Hidden Markov Models are a viable alternative. In many caes highly variable gap
sizes and the small set of seed sequences are problematiefdraining procedures.
PSSM-based approaches therefore were instrumental inasegeent studies on highly
variable ncRNA families such as Y RNAs [MGSS07], vault RN&CH" 09], and telom-
erase RNAs [XMQ08].

While theoretically straightforward, the constructionrefiable PSSMs from sequence
alignments turns out to be a quite non-trivial task. In pipfe; one just has to count
the frequency of the residues in the alignment columns,déech a scheme to treat gap
characters, and possibly add pseudo-counts. In practiveg\rer, one has to deal with
biases in the phylogenetic distribution of the seed seggmehich are often dominated by
a set of closely related model organisms. The small sizeso$dted set, on the other hand,
makes it undesirable to exclude a large fraction of the alskél data. A commonly used
remedy is to use one of several weighting schemes [VS93Jafaro acid sequences more
sophisticated methods for creating unbiased PSSMs arablaie.g. via th&asyPr ed
web server [Nie]. Such unbiased “centroid” PSSMs, howestl, do not include all
the available phylogenetic information, in particulareyhdo not take into account any
knowledge on the relative phylogenetic position of the éaigenome among the aligned
seed sequences.

In this contribution we therefore explore the possibilityemploy a maximum likelihood
(ML) approach to optimize search patterns for usage on écpéat target. Our approach
is similar in spirit to the reconstruction of ancestral semees from their extant offsprings.
Given a phylogenetic tre€, ancestral genes are “resurrected” by inferring the sfates
internal nodes of given the known sequences at the leafs. The earliest agmsaere
based on the parsimony principle [Fit71]. Alternativelyaximum likelihood methods,
introduced by Felsenstein [Fel81], are in use. The lattguire an explicit model of se-
quence evolution. On the other hand, they naturally propidéability distributions over
the amino acid or nucleotide alphabet for every sequendéqoand every internal node



of the tree. In other words, ML provides us with PSSMs for atres states. Compared to
parsimony approaches, maximum likelihood methods are mocarate because branch
lengths, more detailed residue substitution models, aokl-bautations are taken into ac-
count[2J97]. Ancestral sequence reconstruction has besepto be a powerful tool for

testing hypotheses regarding the function of genes fromebgpecies, see, e.g., [Tho04].

Here, we modify this approach. Instead of focusing on therirel nodes of the treg, we
use the same mathematical machinery to infer the most liketyeotide sequence at an
additional leaf node in the tree — the target species for Hogyosearch.

Construction of Search Patterns

We start from a given multiple sequence alignm&htwith m sequences and a phyloge-
netic treeT” with m + 1 leaves, representing the phylogenetic relationships aadch
lengths among then species included in the alignment, and a single additicergjet
specie®). Our approach combines two ML computations. First we WsandT \ 0, the
phylogenetic tree restricted to the aligned species, tmatt for each alignment columin
a relative substitution ratg; The calculation of the likelihood follows Felsenstein’sipr
ing algorithm [Fel81]. The likelihood of a residug at an interior nodé is obtained from
the corresponding likelihoods at the two child nodesd;j, which are separated from
by branches of length andt;, respectively:

k Ly (1) =
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For each alignment columfy we numerically optimizgi; = argmax,Lr(u) using
Golden Section Search [Kie53]. The likelihood of the tféés given by the sum over

all possible states, at the root node: Lr(u) = >, mwsLs (u) where ther, are the
prior probabilities of observing letter. The transition matriX@ contains probabilities
Pyy(t, 1) = [e'*Q],, for changing from state to statex over timet and a rateu. The
instantaneous rate matr} represents a standard substitution model, such as the HKY85
[HKY85] or General Time Reversible (GTR) [Tav86] model foNB sequences. Param-
eters for these models can be estimated from the alignmeunsibg standard maximum
likelihood analysis software lik€AM. [Yan07]. We advocate that this should be done
ideally on larger data sets than the usually short querypaignts themselves.

In the second step, we use the estimated valyde compute the probabilities for each
residue at theé-th position of the target sequence. To this end, we re-taobtiginal tree

T to the target specigs and then calculate the likelihoods, (/i;) for T7°. From these
likelihoods at the root node df°, we directly obtain the residue probabilities in each
alignment columri. Finally, these probabilities are transformed into a PSSM.

Figure 1 exemplifies the difference of a PSSM inferred by theayproach and a PSSM
obtained by counting the nucleotide frequencies in the séigdment. In this particular
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case, the ML estimate is significantly more informative anettimcloser to the motif in
the target sequence.

The ML-PSSM pattern depends explicitly on the relative pasiof the target species in
T. If the target is in close proximity to one or more other spsgcithen high probabili-
ties will be assigned to the residues that are present iretheighboring species. With
increasing distance to the target species, on the other, Handrobabilities will converge
to an uninformative equilibrium distribution. A column dlijorates faster, the larger the
substitution ratgi;. The algorithm thus tells us, which alignment columns oiaeg can
be expected to be informative for a particular target segeefio this end, we compute
the Shannon information of each alignment position as

H(i) = =) fi(s) -log, fi(s) (2)

where f;(s) is the estimated frequency of residuat position:. The corresponding in-
formation content i (i) = H — H(i), whereH = —>"_ f(s)log, f(s) and f(s) is
the background distribution of the residues. In the sintptase,[I = 2 for an uniform
distribution of the four nucleotides.

Significant patterns can now be extracted by finding windofrxgs user-defined minimum
length that have an average information content above aigdtireshold. Alignment
columns with high estimates gf, on the other hand, can be excluded from the search
pattern to compensate for highly variable sites. Thus, tagimum likelihood algorithm

not only provides residue probabilities for each alignmaogition, but also gives infor-
mation about the conserved sites and the variation of nomtaites within one sequence.
We remark that our approach of optimizing theis similar to the method used in the
Rat e4Si t e program [PBM"02], which aims at identifying functional important reggon

in protein surfaces.

Perfor mance Evaluation

As test data we used a collection of genommid t i z alignments of Drosophila species
[Con07] downloaded from the UCSC Genome Brows@nly segments covering all 12
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D.simulans

) Species Dataset 1 Data set 2
D.sechellia ML  Freq A ML  Freq A
D.melanogaster .sm 1.000 0981 0019 1000 0980 0.020

D
D.yakuba D.sec. 1.000 0.981 0.019 1.000 0.975 0.025
D.ereecta D.md. 0986 0.979 0.007 0970 0.972 -0.002
D.ananassae D.yak. 0970 0.971 -0.001 0.963 0.959 0.003

D.peeurdoobscura D.ee.  0.971 0972 -0.001 0.959 0.959 0.000
o D.ana. 0.896 0.885 0.011 0.841 0.842 -0.001
D.persimilis D.pse.  1.000 0.933 0.067 1.000 0.867 0.133
D.willistoni D.per. 1.000 0.928 0.072 1.000 0.865 0.135
D.mojavenis D.wil. 0912 0.890 0.022 0.774 0.765 0.009
Dvirilis D.moj. 0.912 0.882 0.030 0.838 0.772 0.066
D.grimshai D.virr 0913 0.891 0.022 0.858 0.787 0.071
: D.gri. 0.877 0.864 0.013 0.824 0.759 0.065

0.1
Figure 2:left: Phylogenetic tree of the 12 Drosophila species [Confight: Median match scores

of the maximum likelihood PSSMs (ML) and the frequency PS$/eq) for 10 randomly selected
30nt windows from each alignment in both data sets.

drosophilid species were retained and gapped columnsdeatl$etl consists of the 56
alignment segments @. melanogaster chromosome 4 with minimum length 500 and a
mul ti z score of at least0000. The average pairwise sequence identity is 76. B#t2
contains 45 alignments wittnul t i z scores between 100 and 10000 and minimum length
of 200. This set has 67.1% average sequence identity.

We removed one sequence at a time from the alignment and ¢eththe residue prob-
abilities for this sequence with our ML approach from the &thaining sequences using
the phylogenetic tree in figure 2 and the HKY85 substitutiordei. The transition bias
parameter was estimated usinBAM_. For comparison, we computed the position fre-
quency matrix from the same 11 species. Both results wereectad to a PSSM. From
each alignment we randomly selected 10 windows of diffelergths. TheVATCH scores
[KGRT03] of the corresponding interval of the two PSSMs againstltpth aligned se-
quence that was excluded from training were computed ysimgit ch? [TBF+07]. Then
we compared the match scores of each pair of PSSMs and us&dltoxon rank-sum
test to see if the maximum likelihood (ML) scores are sigaifidy larger than the scores
from the frequency method (Freq).

Figures 3 and 4 show th&ATCH scores of each pair of PSSMs for windows of length
L = 30 for SetlandSet2for a representative subset of the 12 drosophilid speciesr-O
all, we observe that the ML matrices have significantly highleTCH scores than the
frequency matrices for most of the target species. Therdifiee is especially apparent
for those drosophilids that have a closely related neiglibtine phylogenetic tree, such
asD. simulans andD. sechellia or D. pseudoobscura andD. persimilis. Here the median

ht t p: // www. bi oi nf . uni - | ei pzi g. de/ Sof t war e/ pwmat ch/



MATCHscore improvementis up 076 for D. persimilisin Set1and0.135 in Set2 Only

for D. ananassae andD. willistoni there is no significant difference of the scoresSiet2
where both the ML and Freq PSSMs perform equally and onlyghiséiverage improve-
ment of the ML PSSMs is visible iSet1 Due to the relatively large distance from all
other species, and the relatively even distribution of fhecges in the tree, the frequency-
based matrix scores are very similar to the ML estimate isgheo cases. Generally, the
improvement of theMATCH scores is higher irSet2 which has lower sequence identity
For instance, the average score difference of both mettmods pseudoobscura is 0.067

in Setland0.133 in Set2 where the median score of the frequency method is much lower
than inSet1

For homology search, short blocks with high informationteom are of particular impor-
tance, since such queries can be searched most efficielhtls, We extracted from both
data sets those sub-patterns containing columns with highmation content at most po-
sitions. Figure 5 summarizes tMATCH scores of the ML and the frequency PSSMs for
all (non-overlapping) windows of length 20nt which have aarage information content
of at least 1.8 bits in the ML matrices. For these patternsphserve again that the ML
approach performs significantly better for most target gsed-or some species, only few
windows fulfilling these constraints can be found, ®gananassae (n=23) orD. willistoni
(n=27). Due to the relatively large distance to the othesdpilids, the ML algorithm as-
signs high residue probabilities only to highly conservighenent columns. Eventually,
these probabilities are very similar to the nucleotidediestries in the seed alignment and
the performance of ML and frequency approach becomes indigshable.

Due to the close phylogenetic relationshipfsimulans andD. sechellia, andD. pseu-
doobscuraandD. persimilis, resp., the ML approach estimates very high nucleotidegrob
bilities for these target species Thus many windows witllsigerage information content
can be found. Compared to the frequency PSSMs, the ML PSSMsdera big perfor-
mance improvement in these species.

Discussion

In this contribution we presented a novel approach for canihg PSSM-like sequence
models for homology search. Unlike standard methods, oxirman likelihood method
aims at building models that are specifically adapted to aqudatr target species. This is
achieved by utilizing the phylogenetic information of theed sequences and the relative
position of the target species therein.

Evaluation on genomic sequence alignments of the 12 seqdethwsophilid species
shows that the maximum likelihood method indeed providessttpected improvements.
We are able to find highly conserved sites in the alignmentaakie use of the sequence
information from neighboring species in the phylogeneteet The more proximal a
known sequence is related to the target species, the mae#isplee search pattern from
the maximum likelihood computation becomes, even for ramgiadrawn samples. |If
the target species is evolutionary distant in the tree froenknown taxa, the alignment



D. simulans: n=450, p-val=0 D. yakuba: n=450, p-val=0.000255 D. ananassae: n=450, p-val=0
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Figure 3: Set T MATCH scores of maximum likelihood (ML) and frequency (Freq) P3Sier
random windows of lengtBOnt (n = 450). P-values of 0” are smaller than machine precision.
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D. simulans: n=571, p-val=0 D. sechhellia: n=558, p-val=0 D. melanogaster: n=257, p-val=3.56e-06
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sites with high information content can be used for building search pattern and the
specificity is better or the same compared to normal searitbrpa based on residue fre-
quencies.

The approach proposed here is potentially useful not onlyHfe purely sequence-based
homology search. In particular for structured RNAs it se@@isiral to incorporate phy-
logenetic information also into covariance models sucthasd utilized by SCFG-based
tools. To this end, base pair substitution models for paaleghment columns need to be
incorporated. We expect that this will be helpful in the déten of conserved structural
elements in ncRNA families as well as aiding in automatiestion of highly probable
structure motifs in a target species. A second issue thatsneebe addressed in future
work is the handling of gaps, which we excluded here for ttke séclarity. In the simplest
case, the approach bf agr ep [MCSQ07] provides a remedy.
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