ISMB-97, 120-123

Finding Common Sequence and Structure Motifs
in a set of RNA Sequences

Jan Gorodkin', Laurie J. Heyer?, Gary D. Stormo?®
!Center for Biological Sequence Analysis, The Technical University of Denmark,
Building 206, 2800 Lyngby. Denmark, (gorodkin@cbs.dtu.dk)
2Department of Applied Mathematics, (heyer@colorado.edu
3Department of Molecular, Cellular and Developmental Biology, (stormo@colorado.edu)

University of Colorado, Boulder, CO 80309, USA *

Abstract

We present a computational scheme to search for
the most common motif, composed of a combina-
tion of sequence and structure constraints, among
a collection of RNA sequences. 'The method
uses a simplified version of the Sankoff algorithm
for simultaneous folding and alignment of RNA
sequences, but maintains tractability by con-
structing multi-sequence alignments from pair-
wise comparisons. The overall method has sim-
ilarities to both CLUSTAL and CONSENSUS,
but the core algorithm assures that the pair-
wise alignments are optimized for both sequence
and structure conservation. Example solutions,
and comparisons with other approaches, are pro-
vided. The solutions include finding consensus
structures identical to published ones.

Introduction

Locating sequence as well as structure motifs in a set
of RNA sequences is of general interest. For example
all of the methods that do structure prediction based
on phylogenetic data require that the alignment of the
sequences be known in advance. That alignment pro-
cess 1s usually done by hand and is one of the biggest
problems in using that approach. The method pre-
sented here promises to automate the alignment and
structure determination process, and can be used on
normal phylogenetic data, on SELEX (Tuerk & Gold
1990) type data where the RN As have been selected in
vitro, and when one has a collection of genes that are
coordinately regulated at the translational level. With
the rapid increase of the genomic databases, and the
expanded use of selected RNAs, the need for such a
structural alignment method which is fast and accu-
rate is still growing.

The problem of finding the best structural align-
ment among N sequences of size L, has been solved
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by (Sankoff 1985), but unfortunately the time com-
plexity is O(L3V), which is impractical. However just
finding the best alignment between N sequences is not
always what we are interested in; some of the N se-
quences might not be really related to the rest, but
have been included in the set erroneously; or some of
the sequences could be functionally related but fall into
two (or more) structural classes so that there is not a
single motif that is common to all of them. Here we
search for the best core structure shared by M < N of
the sequences. The idea is that one should be able to
proceed with other existing RNA folding methods us-
ing this core structure as a solid starting point. How-
ever, here we only present structural alignments di-
rectly obtained using our approach FOLDALIGN.

To reduce the time usage, we present an algorithm
consisting of a core alignment algorithm and a greedy
algorithm which successively adds new sequences to be
aligned using the core algorithm. The core algorithm,
which essentially is the approach of (Sankoff 1985) (for
two sequences), structurally aligns two sequences (or
two collections of aligned sequences), essentially using
a combination of plain sequence alignment (Smith &
Waterman 1981) and a basic algorithm which max-
imizes the number of basepairs (Nussinov & Jacob-
son 1980). In this approach branching configurations
are neglected thus reducing the time complexity from
O(L%) to O(L*), allowing for many more comparisons

using the greedy part of the overall algorithm.

Method

Here we present the basic ideas of the core algorithm
and the greedy algorithm, but refer to (Gorodkin,
Heyer, & Stormo 1997) for further details.

The best structural alignment of the subsequences
(a;,....a;) and (bg,.... b)) of the sequences @ and b
can be found by introducing a dynamic programming
algorithm, presented below. Similar to the sequence
alignment matrix, which is a 5 x 5 matrix (when in-

cluding gaps) defining the similarity for substituting



bases with each other, we can here define a 25 x 25
scoring matrix, S;; x;, over all quadruples, including
gaps. Such a matrix defines the similarity of substi-
tuting one pair of bases with another. This score ma-
trix can, in a natural way, be directly related to the
usual sequence alignment matrix along with another
5 x b matrix listing the degree of complementarity of
between the various bases. Hence for any scoring ma-
trix and the constraint of non-branching structures,
the maximum scoring subsequence alignment can be
obtained from the four-dimensional matrix D;; x; from
the following recursion:
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The maximal D;; ; provides the maximal similarity
between the two sequences. One difference between
this recursion and that of plain sequence alignment, is
there is no zero value. This is because the matrix D
indicates both ends of the alignment, a; with b; and a_j
with b;, and also because we have to allow for negative
values to occur within the complete alignment.

By considering a structural alignment as one consen-
sus sequence with preassigned structure, the dynamic
programming algorithm can be extended to aligning
two collections of alignments against each other. How-
ever, in that alignment process each of the sequences
is aligned to every other sequence, and the structure
component of the S matrix is applied for aligned posi-
tions for which both collections contain basepairs.

With this general scheme of aligning any size collec-
tion to any size collection, we may build up greedy al-
gorithms like those used for CLUSTALW (Thompson,
Higgins, & Gibson 1994) and CONSENSUS (Hertz,
Hartzell ITI, & Stormo 1990). The basic idea of build-
ing up these kinds of comparisons is to pairwise com-
pare all individual sequences to each other, then com-
pare all the pairwise alignments to all the individual
sequences, such that no sequence appears more than
once in each comparison. The next greedy step would

be to align all the triplet alignments to the individual
sequences, and compare all the pairwise alignments to
themselves, still such that no sequence appears more
than once in each final alignment. The algorithm may
then be continued until all sequences have been com-
pared in a final alignment. Clearly this approach ex-
plodes in time. Thus we need efficient procedures to
eliminate alignments that are not useful. For the re-
sults presented below we only include comparisons be-
tween single sequences and r — 1 sequences to obtain
alignments of size r. And we use a threshold s (typi-
cally 30) of the best alignments after each “round” r
In this approach, the time complexity at each round is
O(L*r%s(N —r)), for a total complexity of O(L*N*s).
In selecting the “best” alignment of M < N sequences,
there is a problem that scores increase with the num-
ber of sequences. As a preliminary analysis we look
at a few best alignments of each round r, and compare
score versus alignment length, and find a trade off from
which the final alignment is chosen.

Results

We select four published data sets for investigation,
all from SELEX experiments and for which a consen-
sus structure has been proposed. The first set (H1)
of RNA was found to bind to the human immunode-
ficiency virus type 1 rev protein (Tuerk et al. 1992).
The second set (H2) contains a pseudoknot with spe-
cific affinity for HIV-1-RT (Tuerk, MacDougal, & Gold
1992). The third set (THEO) of RNA binds to the
bronchodilator theophylline (Jenison et al. 1994).
The fourth set (R17) is RNA ligands for the bacte-
riophage R17 coat protein (Schneider, Tuerk, & Gold
1992). The length of all the sequences is in the range
of 30 to 50 nucleotides, and the data set sizes range
from 13 to 36 sequences.

Using other approaches

To compare with our scheme presented above we first
tried a few other methods which are publicly available.

First, we performed multiple alignment of the SE-
LEX data by using the program CLUSTALW with de-
fault parameters. Since this program performs mul-
tiple alignment based on sequence conservation alone,
we do not expect it to identify structurally conserved
regions. As expected, on data sets with significant
amounts of sequence conservation it does fairly well
at identifying those. In the R17 data, the conserved
hairpin loop with A bulge is aligned, but it does not
provide a consistent alignment of the conserved stem
region. For the H2 data set, which contains a pseu-
doknot, where the one basepair region is conserved in
sequence, but the other is not, only the sequence con-



served region is found. The THEO data contains se-
quence conservation, but it is misaligned in the two
subclasses. The H1 data has less sequence conserva-
tion than the others and is not aligned well.

Next, we applied the COVE program (Eddy &
Durbin 1994) to structurally align the data sets. This
stochastic context—free grammar approach which con-
siders mutual information is similar to the work of
(Sakakibara et al. 1994). COVE performs global align-
ment on a collection of sequences and has been shown
to perform well on tRNA for which a global (consensus)
structure is defined. It is well known that it is hard to
find local features using a global alignment procedure,
so we did not expect this package to perform well on
the SELEX data sets, and it did not. Using the same
data sets as for CLUSTALW we did not find any strong
signals for consensus structures, not even if we used the
CLUSTALW alignments as input to the program. The
multiple structural alignment method presented here
can be used to construct a core model which can then
be used by COVE to extend and refine that model.

The Vienna RNA package (Hofacker et al. 1994)
(see references therein) includes a program RNAfold
to find the minimum free energy structures, and a pro-
gram RNAdistance to find the distance between two
structures in terms of the smallest cost along the edit-
ing path when representing the structures as trees.
We folded each sequence in the data sets and found
that many of the structures resembled the published
structures, when neglecting the H2 pseudoknot. Using
RNAdistance to pairwise compare the structures and
appropriate cut—off scores to select reasonable compar-
isons, we found a number of sequences with similar
structures (in the respective data sets) were clustered
together. However, we did not find a strongest com-
mon structure, or the consensus structure for the re-
spective data sets.

FOLDALIGN

For each of the investigated data sets we did find the
subset with the strongest common motif in sequence
and structure, matching what has been published.
The data set H1 has been assigned three structural
classes. The classes all contain the same structural
elements, the largest class consisting of 10 sequences.
However, three of them use the constant SELEX re-
gions in the basepairing (which were not included in
our data sets), so we would not expect to find more
than seven of them with conserved structure. For
those seven sequences FOLDALIGN finds the pub-
lished alignment as shown in Table 1. Furthermore
FOLDALIGN succeeds in merging the two strongest
classes, getting only one sequence wrong in the align-
ment. (All of the sequences in the third class utilize

part of the constant region in their structures, and so
cannot be aligned properly with the other sequences.)
The additional structure identified by FOLDALIGN
(Table 1), but not included in the published consensus
structure, is included in the consensus structure for the
largest class (Figure 3 of (Tuerk et al. 1992)).

Table 1: The strongest aligned class of the H1 data set.
The parentheses indicate predicted basepairing, the under-
score complete matching for a column. The numbers refers
to the published sequence labels. Only the aligned part of
the sequences are shown.
GGAUUUGAGAUACAC-GGAA-GUGGACUCUCC 17
GCC-UUGAGAUACACUAUAUAGUGGAC-CGGC 5
GGC-UGGAGAUACAAACUAU-UUGG-CUCGCC 4a
AUU---GAGAAACAC-GUUU-GUGGACUCGGU 6b
ACC-UUGAGGUACUC-UUAA-CAGG-CUCGGU 11
GCA-UUGAGAAACAC-GUUU-GUGGACUCUGU 6a
GAA-UUGAGAAACAC--UAA-CUGGCCUCUUU 14
ST [ M )))  (publ.)
e (e ))_.).)))) (FOLDALIGN)

Even better results are obtained for the data set
H2. As mentioned this data set contains a pseudo-
knot, two overlapping stem-loop regions, and there-
fore violates the knot constraint in dynamic program-
ming. One stem region is highly conserved in sequence,
and the other has almost no sequence conservation.
FOLDALIGN aligns the sequence conserved regions
based on their sequence alignment, but at the same
time aligns the other stem region which only is con-
served in structure (see Table 2). We anticipate that
other folding approaches, given this alignment, easily
will predict the pseudoknot (Cary & Stormo 1995).

Table 2: The strongest aligned class of the H2 data
set. The parentheses indicate basepairing (and the square
brackets for pseudoknot), the underscore complete align-
ment for a column. The numbers refers to the published
sequence labels. Only the aligned part of the sequences are
shown.

CCAGAGGCCCAACUGGUAAACGGGC
CCG-AAGCUCAACGGGAUAAUGAGC
CCG-AAGCCGAACGGGAAAACCGGC
CC-CAAGCGC-AGGGGAGAA-GCGC
CCG-ACGCCA-ACGGGAGAA-UGGC
CCGUUUUCAG-UCGGGAAAAACUGA
CCGUUACUCC-UCGGGAUAAAGGAG
CCGUAAGAGG-ACGGGAUAAACCUC
CCG-UAGGAG-GCGGGAUAU-CUCC
€CG--UGCCG-GCGGGAUAU-CGGC
CCG-AACUCG-ACGGGAUAA-CGAG
CCG--ACUCG--CGGGAUAA-CGAG
[C....(C(C.... 1. ... ))))  (publ.)

e {((Cvee__ve_.)))) (FOLDALIGN)
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The third data set, THEO, consists of two struc-
tural classes which are circular permutations of each
other. FOLDALIGN identifies the proper motif from
the largest class, getting the alignment exactly right
for six of the eight sequences. The two remaining se-
quences contain the shortest stems, only two basepairs
in one case, and require the most gaps for proper align-
ment. The second class could not be aligned with the



first due to the circular permutation, but their common
structure should be identifiable if they are treated as
a separate class (not tested).

The final set, R17, consists of 36 sequences. For
many of these part of the structural motif is contained
in the constant SELEX region of the sequence, and
so not available to the program for alignment. How-
ever, we obtained a perfect alignment for the subset of
nine sequences that have at least six basepairs in the
stem. We also found a perfect alignment for 12 of 16
sequences with at least five basepair stems. Alignment
of larger subsets are nearly correct, although they do
contain a few misaligned sequences.

Conclusion

We have presented a method to structurally align a set
of RNA sequences, as well as selecting the subsets con-
taining the most significant alignments. The method
was able to fully find the published alignments of con-
served motifs. The complete structure was not always
obtained, as in the case of the pseudoknot, due to the
dynamic programming limitation. But the core align-
ment that is obtained can be used by existing meth-
ods to complete the motif identification. For this type
of problem the method clearly outperforms the other
commonly used methods applied, and we conclude that
our method, to a very large extent, can replace the
alignments currently made by hand, or provide signif-
icant hints to assist with “hands-on” methods.
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