cheR
BSGatlas-gene-2671
BSGatlas
Description | Information |
---|---|
Coordinates | 2380347..2381117 |
Genomic Size | 771 bp |
Name | cheR |
Outside Links | SubtiWiki |
BsubCyc | |
Strand | - |
Type | CDS |
SubtiWiki
Description | Information |
---|---|
Alternative Name | cheR |
Category | SW 3 Information processing |
SW 3.3 Protein synthesis, modification and degradation | |
SW 3.3.4 Protein modification | |
SW 3.3.4.8 Protein modification/ other | |
SW 4 Lifestyles | |
SW 4.1 Exponential and early post-exponential lifestyles | |
SW 4.1.1 Motility and chemotaxis | |
SW 4.1.1.1 Signal transduction in motility and chemotaxis | |
SW 4.1.1.1.1 Soluble signalling proteins | |
Description | MCPs methyltransferase |
Enzyme Classifications | EC 2.1.1.80: protein-glutamate O-methyltransferase |
Function | motility, chemotaxis |
Is essential? | no |
Isoelectric point | 9.25 |
Locus Tag | BSU_22720 |
Molecular weight | 29.8017 |
Name | cheR |
Product | MCPs methyltransferase |
RefSeq
Description | Information |
---|---|
Alternative Locus Tag | BSU22720 |
Description | Evidence 1a: Function from experimental evidencesin the studied strain; PubMedId: 7635819, 7893679,8244966, 10196193, 15544802, 25799883, 27544050; Producttype e: enzyme |
Enzyme Classifications | EC 2.1.1.80: protein-glutamate O-methyltransferase |
Functions | 16.5: Explore |
Locus Tag | BSU_22720 |
Name | cheR |
Title | methyl-accepting chemotaxis proteins (MCPs)methyltransferase |
Type | CDS |
BsubCyc
Description | Information |
---|---|
Citation | Batra M;Sharma R;Chandra V;Aggarwal M;Agarwal U;Gupta P;Singh RP;Tomar S In silico and proteomic analysis of protein methyltransferase CheR from Bacillus subtilis. Int J Biol Macromol 77;168-80 (2015) PUBMED: 25799883 |
Batra M;Sharma R;Malik A;Dhindwal S;Kumar P;Tomar S Crystal structure of pentapeptide-independent chemotaxis receptor methyltransferase (CheR) reveals idiosyncratic structural determinants for receptor recognition. J Struct Biol 196(3);364-374 (2016) PUBMED: 27544050 | |
Cannistraro VJ;Glekas GD;Rao CV;Ordal GW Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis. J Bacteriol 193(13);3220-7 (2011) PUBMED: 21515776 | |
Comment | 16.5: Explore |
Description | methyl-accepting chemotaxis proteins (MCPs) methyltransferase |
Enzyme Classifications | EC 2.1.1.80: protein-glutamate O-methyltransferase |
Gene Ontology | GO:0006479 protein methylation |
GO:0006935 chemotaxis | |
GO:0008168 methyltransferase activity | |
GO:0008757 S-adenosylmethionine-dependent methyltransferase activity | |
GO:0008983 protein-glutamate O-methyltransferase activity | |
GO:0016740 transferase activity | |
GO:0032259 methylation | |
Locus Tag | BSU22720 |
Molecular weight | 29.952 |
Name | cheR |
Nicolas et al. predictions
Description | Information |
---|---|
Expression neg. correlated with | BSU25730, BSU07770, BSU07760, new_4159457_4159757_c, new_4194210_4195441_c, BSU31322, BSU40460, BSU14970, BSU30720, BSU26560 |
Expression pos. correlated with | BSU40970, BSU18800, BSU29610, BSU31410, BSU22020, BSU21990, BSU25050, new_3031418_3031523_c, BSU11000, new_2056617_2057213 |
Highly expressed condition | (BMM) Cells were grown in a synthetic medium (J. Stülke, R. Hanschke, M. Hecker, J Gen Microbiol 139, 2041, Sep, 1993) with 0.2 % glucose as carbon source (Belitsky Minimal Medium/BMM) at 37 °C with vigorous shaking. Stress was applied to exponentially growing cultures at OD500nm of 0.4. Samples were harvested before stress [BMM]; after a rapid temperature up-shift from 37 °C to 48 °C [Heat]; after a temperature down-shift from 37 °C to 18 °C [Cold]. Ethanol stress was imposed by adding ethanol to a final concentration of 4 % (v/v) and cells were harvested 10 minutes after ethanol addition [Etha]. |
(C90) Cellsgrown overnight on LB agar plates at 30°Cwere harvested and used to inoculate pre-warmed minimal medium at OD600 of 0.5 (D. Dubnau, R. Davidoff-Abelson, J Mol Biol 56, 209, Mar 14, 1971). After growth at 37°C with vigorous shaking, cells were diluted ten times in fresh pre-warmed minimal medium and samples were harvested after a period of 30 minutes [C30] , i.e. before maximal induction of competence, and after a period of 90 minutes [C90], i.e. when competence induction was maximal. | |
(GM+120) A culture of LB medium was inocualted from a frozen glycerol stock of B. subtilis. After few hours at 37oC when the culture was growing exponentially, this culture was used to inoculate M9 minimal medium at several different dilutions usually in the range of 500- to 2000-fold. The dilution range was chosen to ensure that at least one of these M9 precultures had reached an OD600 between 0.5 - 1.0 after overnight incubation. These precultures were then used to inoculate 2.5 L of M9 medium in a 3.1 L KLF bioreactor (Bioengineering AG, Wald, Switzerland) to a starting OD600 of 0.03 – 0.05. Condiions in the bioreactor were rigorously controlled as follows: temperature was controlled at 37 °C; the pH was maintained at exactly 7.2 by automatic titration with 2.0 M KOH and 2.0 M H2SO4, and the dissolved oxygen tension was maintained above 50%. In each nutritional shift experiment cells were grown on the single substrate until the OD600 reached 0.50, at which point the second substrate was added instantaneously (4 g/L L-malate or 3 g/L glucose). The nutrient shifts performed were from glucose to glucose+malate [GM] and from malate to malate+glucose [MG] (Buescher et al., accompanying paper). Cell growth during the course was monitored throughout the experiment by measuring OD600. | |
(GM+15) A culture of LB medium was inocualted from a frozen glycerol stock of B. subtilis. After few hours at 37oC when the culture was growing exponentially, this culture was used to inoculate M9 minimal medium at several different dilutions usually in the range of 500- to 2000-fold. The dilution range was chosen to ensure that at least one of these M9 precultures had reached an OD600 between 0.5 - 1.0 after overnight incubation. These precultures were then used to inoculate 2.5 L of M9 medium in a 3.1 L KLF bioreactor (Bioengineering AG, Wald, Switzerland) to a starting OD600 of 0.03 – 0.05. Condiions in the bioreactor were rigorously controlled as follows: temperature was controlled at 37 °C; the pH was maintained at exactly 7.2 by automatic titration with 2.0 M KOH and 2.0 M H2SO4, and the dissolved oxygen tension was maintained above 50%. In each nutritional shift experiment cells were grown on the single substrate until the OD600 reached 0.50, at which point the second substrate was added instantaneously (4 g/L L-malate or 3 g/L glucose). The nutrient shifts performed were from glucose to glucose+malate [GM] and from malate to malate+glucose [MG] (Buescher et al., accompanying paper). Cell growth during the course was monitored throughout the experiment by measuring OD600. | |
(GM+90) A culture of LB medium was inocualted from a frozen glycerol stock of B. subtilis. After few hours at 37oC when the culture was growing exponentially, this culture was used to inoculate M9 minimal medium at several different dilutions usually in the range of 500- to 2000-fold. The dilution range was chosen to ensure that at least one of these M9 precultures had reached an OD600 between 0.5 - 1.0 after overnight incubation. These precultures were then used to inoculate 2.5 L of M9 medium in a 3.1 L KLF bioreactor (Bioengineering AG, Wald, Switzerland) to a starting OD600 of 0.03 – 0.05. Condiions in the bioreactor were rigorously controlled as follows: temperature was controlled at 37 °C; the pH was maintained at exactly 7.2 by automatic titration with 2.0 M KOH and 2.0 M H2SO4, and the dissolved oxygen tension was maintained above 50%. In each nutritional shift experiment cells were grown on the single substrate until the OD600 reached 0.50, at which point the second substrate was added instantaneously (4 g/L L-malate or 3 g/L glucose). The nutrient shifts performed were from glucose to glucose+malate [GM] and from malate to malate+glucose [MG] (Buescher et al., accompanying paper). Cell growth during the course was monitored throughout the experiment by measuring OD600. | |
(LBGtran) Cells were grown in Luria-Bertani medium (Sigma) supplemented with glucose 0.3 % [LBG] at 37°C with vigorous shaking in flasks. Overnight cultures were diluted 2000-fold in fresh pre-warmed medium and samples were collected during the exponential [exp], transition [tran] and stationary [stat] phases of the growth cycle . | |
(M0t90) Cells were grown in LB medium at 37°C with vigorous shaking. An exponentially growing culture (O.D.600 approx. 0.25) was divided: one culture acted as the control [no mitomycin C , M0] while mitomycin was added to the second culture to a final concentration of 40 ng/ml [mitomycin, M40]. Samples were harvested at 0, 45 and 90 minutes after mitomycin addition [t0, t45 and t90]. | |
(MG-0.1) A culture of LB medium was inocualted from a frozen glycerol stock of B. subtilis. After few hours at 37oC when the culture was growing exponentially, this culture was used to inoculate M9 minimal medium at several different dilutions usually in the range of 500- to 2000-fold. The dilution range was chosen to ensure that at least one of these M9 precultures had reached an OD600 between 0.5 - 1.0 after overnight incubation. These precultures were then used to inoculate 2.5 L of M9 medium in a 3.1 L KLF bioreactor (Bioengineering AG, Wald, Switzerland) to a starting OD600 of 0.03 – 0.05. Condiions in the bioreactor were rigorously controlled as follows: temperature was controlled at 37 °C; the pH was maintained at exactly 7.2 by automatic titration with 2.0 M KOH and 2.0 M H2SO4, and the dissolved oxygen tension was maintained above 50%. In each nutritional shift experiment cells were grown on the single substrate until the OD600 reached 0.50, at which point the second substrate was added instantaneously (4 g/L L-malate or 3 g/L glucose). The nutrient shifts performed were from glucose to glucose+malate [GM] and from malate to malate+glucose [MG] (Buescher et al., accompanying paper). Cell growth during the course was monitored throughout the experiment by measuring OD600. | |
(S1) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
Lowely expressed condition | (B60) A fresh colony grown on an LB plate was used to inoculate 10 ml of LB and grown for 10 hoursat 30°C. This culture wasused to inoculate 10 ml of MSgg medium (S.S. Branda et al., J Bacteriol 186, 3970, Jun, 2004) and incubated with vigorous shaking. The cultures in MSgg were diluted to the same extent in 96 wells microtiterplates (5 μl for 1.5 ml of medium) and incubated without shaking at 30°C. Cells from the control cultures were harvested after 24 hours of incubation [BT]. Biofilms were harvested from 96 well plates after incubation for 36 hours [B36] and 60 hours [B60]. |
(BT) A fresh colony grown on an LB plate was used to inoculate 10 ml of LB and grown for 10 hoursat 30°C. This culture wasused to inoculate 10 ml of MSgg medium (S.S. Branda et al., J Bacteriol 186, 3970, Jun, 2004) and incubated with vigorous shaking. The cultures in MSgg were diluted to the same extent in 96 wells microtiterplates (5 μl for 1.5 ml of medium) and incubated without shaking at 30°C. Cells from the control cultures were harvested after 24 hours of incubation [BT]. Biofilms were harvested from 96 well plates after incubation for 36 hours [B36] and 60 hours [B60]. | |
(LBGstat) Cells were grown in Luria-Bertani medium (Sigma) supplemented with glucose 0.3 % [LBG] at 37°C with vigorous shaking in flasks. Overnight cultures were diluted 2000-fold in fresh pre-warmed medium and samples were collected during the exponential [exp], transition [tran] and stationary [stat] phases of the growth cycle . | |
(S4) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
(S5) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
(S6) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
(S7) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
(S8) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
(Salt) Cells were grown in Spizizen’s minimal medium (SMM) at 37 °C with vigorous shaking. Salt was added, to a final concentration of 0.4 M to an exponentially growing culture of cells at OD500 of 0.4. Samples were harvested before [SMM] and 10 minutes after [Salt] NaCl addition. | |
(Sw) Exponentially growing cells were spotted on 1 % agar LB plates and incubated at 37°C. Swarming cells were collected after 16 hours. | |
Name | cheR |
KEGG Pathways
Description | Information |
---|---|
Pathway | Two-component system (ko02020) |
Bacterial chemotaxis (ko02030) |