yraA
BSGatlas-gene-3168
BSGatlas
| Description | Information |
|---|---|
| Coordinates | 2757492..2758001 |
| Genomic Size | 510 bp |
| Name | yraA |
| Outside Links | SubtiWiki |
| BsubCyc | |
| Strand | + |
| Type | CDS |
SubtiWiki
| Description | Information |
|---|---|
| Alternative Name | yraA |
| Category | SW 3 Information processing |
| SW 3.3 Protein synthesis, modification and degradation | |
| SW 3.3.7 Proteolysis | |
| SW 3.3.7.4 Additional proteins involved in proteolysis | |
| SW 4 Lifestyles | |
| SW 4.3 Coping with stress | |
| SW 4.3.1 General stress proteins (controlled by SigB) | |
| SW 4.3.8 Resistance against oxidative and electrophile stress | |
| Description | general stress protein, degradation of damaged thiol-containing proteins, glyoxalase III-like enzyme |
| Function | detoxification of methylglyoxal |
| Is essential? | no |
| Isoelectric point | 4.73 |
| Locus Tag | BSU_27020 |
| Molecular weight | 18.3687 |
| Name | yraA |
| Product | glyoxalase III-like enzyme |
RefSeq
| Description | Information |
|---|---|
| Alternative Locus Tag | BSU27020 |
| Description | Evidence 2a: Function from experimental evidencesin other organisms; PubMedId: 12775685, 17257049,17933887, 24330391, 26774339; Product type e: enzyme |
| Functions | 16.8: Protect |
| Locus Tag | BSU_27020 |
| Name | sufL |
| Title | deglycase; general stress protecting enzyme;protects against methylglyoxal toxicity |
| Type | CDS |
BsubCyc
| Description | Information |
|---|---|
| Citation | Chandrangsu P;Dusi R;Hamilton CJ;Helmann JD Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways. Mol Microbiol 91(4);706-15 (2014) PUBMED: 24330391 |
| Reder A;Hoper D;Gerth U;Hecker M Contributions of individual σB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis. J Bacteriol 194(14);3601-10 (2012) PUBMED: 22582280 | |
| Comment | 16.8: Protect |
| Description | general stress protein |
| Enzyme Classifications | EC 4.2.1.130: D-lactate dehydratase |
| Gene Ontology | GO:0000303 response to superoxide |
| GO:0006508 proteolysis | |
| GO:0006950 response to stress | |
| GO:0008233 peptidase activity | |
| GO:0016787 hydrolase activity | |
| GO:0016798 hydrolase activity, acting on glycosyl bonds | |
| Locus Tag | BSU27020 |
| Molecular weight | 18.512 |
| Name | yraA |
Nicolas et al. predictions
| Description | Information |
|---|---|
| Expression neg. correlated with | new_2844574_2844638_c, BSU27840, new_2845839_2845914_c, BSU29430, new_300503_300693_c, BSU27850, BSU22520, BSU29450, new_3847279_3847347, BSU29440 |
| Expression pos. correlated with | BSU03910, BSU08560, BSU39780, BSU10260, BSU29410, BSU08210, BSU33400, BSU08220, BSU11550, BSU23820 |
| Highly expressed condition | (dia15) Diamide was added to an exponentially growing culture (OD600 approx. 0.6) at a sub-lethal concentration(0.5 mM) and growth continued at 37°C with vigorous shaking. Samples were collected 0, 5 and 15 minutes after diamide addition [dia0, dia5 and dia15]. |
| (dia5) Diamide was added to an exponentially growing culture (OD600 approx. 0.6) at a sub-lethal concentration(0.5 mM) and growth continued at 37°C with vigorous shaking. Samples were collected 0, 5 and 15 minutes after diamide addition [dia0, dia5 and dia15]. | |
| (Diami) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition | |
| (Etha) Cells were grown in a synthetic medium (J. Stülke, R. Hanschke, M. Hecker, J Gen Microbiol 139, 2041, Sep, 1993) with 0.2 % glucose as carbon source (Belitsky Minimal Medium/BMM) at 37 °C with vigorous shaking. Stress was applied to exponentially growing cultures at OD500nm of 0.4. Samples were harvested before stress [BMM]; after a rapid temperature up-shift from 37 °C to 48 °C [Heat]; after a temperature down-shift from 37 °C to 18 °C [Cold]. Ethanol stress was imposed by adding ethanol to a final concentration of 4 % (v/v) and cells were harvested 10 minutes after ethanol addition [Etha]. | |
| (H2O2) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition | |
| (LBGstat) Cells were grown in Luria-Bertani medium (Sigma) supplemented with glucose 0.3 % [LBG] at 37°C with vigorous shaking in flasks. Overnight cultures were diluted 2000-fold in fresh pre-warmed medium and samples were collected during the exponential [exp], transition [tran] and stationary [stat] phases of the growth cycle . | |
| (LBtran) Cells were grown in Luria-Bertani medium (Sigma) [LB] at 37°C with vigorous shaking in flasks. Overnight cultures were diluted 2000-fold in fresh pre-warmed medium and samples were collected during the exponential [exp], transition [tran] and stationary [stat] phases of the growth cycle . | |
| (LPhT) Cells were harvested (i) during exponential growth in high phosphate defined medium [HPh]; (ii) during exponential growth in low phosphate defined medium [LPh] (J. P. Muller, Z. An, T. Merad, I. C. Hancock, C. R. Harwood, Microbiology 143, 947, Mar, 1997);and (iii) at three hours after the outset of the phosphate-limitation induced stationary phase [LPhT]. | |
| (M0t90) Cells were grown in LB medium at 37°C with vigorous shaking. An exponentially growing culture (O.D.600 approx. 0.25) was divided: one culture acted as the control [no mitomycin C , M0] while mitomycin was added to the second culture to a final concentration of 40 ng/ml [mitomycin, M40]. Samples were harvested at 0, 45 and 90 minutes after mitomycin addition [t0, t45 and t90]. | |
| (Salt) Cells were grown in Spizizen’s minimal medium (SMM) at 37 °C with vigorous shaking. Salt was added, to a final concentration of 0.4 M to an exponentially growing culture of cells at OD500 of 0.4. Samples were harvested before [SMM] and 10 minutes after [Salt] NaCl addition. | |
| Lowely expressed condition | (C30) Cellsgrown overnight on LB agar plates at 30°Cwere harvested and used to inoculate pre-warmed minimal medium at OD600 of 0.5 (D. Dubnau, R. Davidoff-Abelson, J Mol Biol 56, 209, Mar 14, 1971). After growth at 37°C with vigorous shaking, cells were diluted ten times in fresh pre-warmed minimal medium and samples were harvested after a period of 30 minutes [C30] , i.e. before maximal induction of competence, and after a period of 90 minutes [C90], i.e. when competence induction was maximal. |
| (Cold) Cells were grown in a synthetic medium (J. Stülke, R. Hanschke, M. Hecker, J Gen Microbiol 139, 2041, Sep, 1993) with 0.2 % glucose as carbon source (Belitsky Minimal Medium/BMM) at 37 °C with vigorous shaking. Stress was applied to exponentially growing cultures at OD500nm of 0.4. Samples were harvested before stress [BMM]; after a rapid temperature up-shift from 37 °C to 48 °C [Heat]; after a temperature down-shift from 37 °C to 18 °C [Cold]. Ethanol stress was imposed by adding ethanol to a final concentration of 4 % (v/v) and cells were harvested 10 minutes after ethanol addition [Etha]. | |
| (LoTm) Cells were grown in Spizizen’s minimal medium (SMM) (C. Anagnostopoulos, J. Spizizen, J Bacteriol 81, 741, May, 1961) with vigorous agitation. The control culture was grown at 37 °C [SMMPr]. For growth at high or low temperatures, pre-cultures were grown at 37 °C, diluted to an OD578nm of 0.1 and subsequently transferred to 51 °C [HiTm] and 16 °C [LoTm], respectively. For the growth at high salinity, the salinity of the medium was adjusted by adding NaCl (5 M stock solution) to produce a final concentration of 1.2 M [HiOs]. | |
| (Pyr) A 5 ml aliquot of LB medium was inoculated using frozen culture stocks. After a few hours growth at 37°C, precultures were prepared by inoculating 5 ml of M9 with this LB culture at several different dilutions usually ranging from 500- to 2000-fold. The dilution range was chosen so that one of these precultures had grown to and OD600 of 0.5 - 1.0 after overnight inculation. The chosen M9 medium precultures [at OD600 of 0.5 - 1.0] were used to inoculate 100 mL of M9 medium in 500 mL non-baffled shake flasks to an OD600 of 0.02. Filter-sterilized carbon sources were added separately to the medium M9 at following concentration: D-Glucose 3g/L[Glu], L-Malic acid 4.5g/L[Mal], L-Malic acid + D-Glucose 3 and 2g/L[M+G], D-Fructose 3g/L[Fru], D-Gluconate 4g/L[Glucon], Pyruvate 6g/L[Pyr], Glycerol 6g/L[Gly], Glutamic acid + Succinic acid 2 and 2g/L[G+S]. Where necessary, carbon source solutions were pH neutralized with 4 M NaOH prior to addition to the medium. Cells were harvested during the exponential growth phase. | |
| (S3) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
| (S4) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
| (S5) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
| (S7) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
| (S8) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
| Name | yraA |