yvgJ
BSGatlas-gene-3913
BSGatlas
Description | Information |
---|---|
Coordinates | 3422354..3424207 |
Genomic Size | 1854 bp |
Name | yvgJ |
Outside Links | SubtiWiki |
BsubCyc | |
Strand | + |
Type | CDS |
SubtiWiki
Description | Information |
---|---|
Alternative Name | yvgJ |
yvgJ | |
yvsF | |
Category | SW 1 Cellular processes |
SW 1.1 Cell envelope and cell division | |
SW 1.1.1 Cell wall synthesis | |
SW 1.1.1.3 Biosynthesis of lipoteichoic acid | |
SW 2 Metabolism | |
SW 2.6 Additional metabolic pathways | |
SW 2.6.1 Biosynthesis of cell wall components | |
SW 2.6.1.2 Biosynthesis of lipoteichoic acid | |
SW 6 Groups of genes | |
SW 6.2 Membrane proteins | |
Description | lipoteichoic acid synthesis primase |
Function | biosynthesis of lipoteichoic acid |
Is essential? | no |
Isoelectric point | 5.31 |
Locus Tag | BSU_33360 |
Molecular weight | 70.5689 |
Name | yvgJ |
Product | lipoteichoic acid synthesis primase |
RefSeq
Description | Information |
---|---|
Alternative Locus Tag | BSU33360 |
Description | Evidence 1a: Function from experimental evidencesin the studied strain; PubMedId: 15187182, 21255105,23103977, 25288647; Product type e: enzyme |
Functions | 16.13: Shape |
Locus Tag | BSU_33360 |
Name | ltaSP |
Title | primase of polyglycerolphosphate lipoteichoicacid (LTA) synthesis |
Type | CDS |
BsubCyc
Description | Information |
---|---|
Alternative Name | yvsF |
Citation | Hashimoto M;Seki T;Matsuoka S;Hara H;Asai K;Sadaie Y;Matsumoto K Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with defects in lipoteichoic acid synthesis. Microbiology 159(Pt 1);23-35 (2013) PUBMED: 23103977 |
Kiriyama Y;Yazawa K;Tanaka T;Yoshikawa R;Yamane H;Hashimoto M;Sekiguchi J;Yamamoto H Localization and expression of the Bacillus subtilis DL-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes. Microbiology 160(Pt 12);2639-49 (2014) PUBMED: 25288647 | |
Sutcliffe IC Priming and elongation: dissection of the lipoteichoic acid biosynthetic pathway in Gram-positive bacteria. Mol Microbiol 79(3);553-6 (2011) PUBMED: 21255102 | |
Comment | YvgJ is a lipoteichoic acid primase that transfers the initial glycerol-phosphate subunit onto the glycolipid anchor and thus produces GroP-Glc2-DAG |CITS: [21255105]|. |
Description | lipoteichoic acid primase |
Gene Ontology | GO:0003824 catalytic activity |
GO:0005576 extracellular region | |
GO:0005886 plasma membrane | |
GO:0008152 metabolic process | |
GO:0008484 sulfuric ester hydrolase activity | |
GO:0016020 membrane | |
GO:0016021 integral component of membrane | |
GO:0046872 metal ion binding | |
GO:0070395 lipoteichoic acid biosynthetic process | |
Locus Tag | BSU33360 |
Molecular weight | 70.746 |
Name | yvgJ |
Nicolas et al. predictions
Description | Information |
---|---|
Expression neg. correlated with | new_2273515_2273748, new_2069824_2069977, BSU29249, BSU12440, new_820648_820823, BSU17340, BSU12430, new_213878_213940, BSU18908, BSU01910 |
Expression pos. correlated with | BSU31770, BSU36710, BSU04290, BSU03620, BSU04280, BSU09220, BSU04300, BSU04310, BSU09240, BSU37650 |
Highly expressed condition | (Diami) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition |
(Etha) Cells were grown in a synthetic medium (J. Stülke, R. Hanschke, M. Hecker, J Gen Microbiol 139, 2041, Sep, 1993) with 0.2 % glucose as carbon source (Belitsky Minimal Medium/BMM) at 37 °C with vigorous shaking. Stress was applied to exponentially growing cultures at OD500nm of 0.4. Samples were harvested before stress [BMM]; after a rapid temperature up-shift from 37 °C to 48 °C [Heat]; after a temperature down-shift from 37 °C to 18 °C [Cold]. Ethanol stress was imposed by adding ethanol to a final concentration of 4 % (v/v) and cells were harvested 10 minutes after ethanol addition [Etha]. | |
(G135) Purified spores were obtained by growing cells in DSM medium (P. Schaeffer, J. Millet, J. P. Aubert, Proc Natl Acad Sci U S A 54, 704, Sep, 1965) at 37°C for 48 hours after which they were washed ten times in ice cold distilled waterover a period of 5 days. Purified spores were heat activated at 70°C in Tris 10 mM pH8.4 and germination was initiated by the addition of L-alanine 10 mM (A. Moir, J Bacteriol 146, 1106, Jun, 1981). After incubation for one hour at 37°C, the culture was diluted with an equal volume of 2X LBmedium and germinating cells were harvested at 135, 150 or 180 minutes after addition of L-alanine [G135, G150 and G180]. | |
(G150) Purified spores were obtained by growing cells in DSM medium (P. Schaeffer, J. Millet, J. P. Aubert, Proc Natl Acad Sci U S A 54, 704, Sep, 1965) at 37°C for 48 hours after which they were washed ten times in ice cold distilled waterover a period of 5 days. Purified spores were heat activated at 70°C in Tris 10 mM pH8.4 and germination was initiated by the addition of L-alanine 10 mM (A. Moir, J Bacteriol 146, 1106, Jun, 1981). After incubation for one hour at 37°C, the culture was diluted with an equal volume of 2X LBmedium and germinating cells were harvested at 135, 150 or 180 minutes after addition of L-alanine [G135, G150 and G180]. | |
(G180) Purified spores were obtained by growing cells in DSM medium (P. Schaeffer, J. Millet, J. P. Aubert, Proc Natl Acad Sci U S A 54, 704, Sep, 1965) at 37°C for 48 hours after which they were washed ten times in ice cold distilled waterover a period of 5 days. Purified spores were heat activated at 70°C in Tris 10 mM pH8.4 and germination was initiated by the addition of L-alanine 10 mM (A. Moir, J Bacteriol 146, 1106, Jun, 1981). After incubation for one hour at 37°C, the culture was diluted with an equal volume of 2X LBmedium and germinating cells were harvested at 135, 150 or 180 minutes after addition of L-alanine [G135, G150 and G180]. | |
(H2O2) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition | |
(Heat) Cells were grown in a synthetic medium (J. Stülke, R. Hanschke, M. Hecker, J Gen Microbiol 139, 2041, Sep, 1993) with 0.2 % glucose as carbon source (Belitsky Minimal Medium/BMM) at 37 °C with vigorous shaking. Stress was applied to exponentially growing cultures at OD500nm of 0.4. Samples were harvested before stress [BMM]; after a rapid temperature up-shift from 37 °C to 48 °C [Heat]; after a temperature down-shift from 37 °C to 18 °C [Cold]. Ethanol stress was imposed by adding ethanol to a final concentration of 4 % (v/v) and cells were harvested 10 minutes after ethanol addition [Etha]. | |
(Oxctl) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition | |
(Paraq) Cells were grown in LB medium at 37°C. At OD540 of 0.3, the culture were divided into four subcultures and diamide 0.6 mM [Diami], paraquat 0.4 mM [Paraq], H2O2 0.1mM [H2O2] or no oxidative drug [Oxctl] were added to the medium. Samples were taken 10 minutes after addition | |
(Salt) Cells were grown in Spizizen’s minimal medium (SMM) at 37 °C with vigorous shaking. Salt was added, to a final concentration of 0.4 M to an exponentially growing culture of cells at OD500 of 0.4. Samples were harvested before [SMM] and 10 minutes after [Salt] NaCl addition. | |
Lowely expressed condition | (B36) A fresh colony grown on an LB plate was used to inoculate 10 ml of LB and grown for 10 hoursat 30°C. This culture wasused to inoculate 10 ml of MSgg medium (S.S. Branda et al., J Bacteriol 186, 3970, Jun, 2004) and incubated with vigorous shaking. The cultures in MSgg were diluted to the same extent in 96 wells microtiterplates (5 μl for 1.5 ml of medium) and incubated without shaking at 30°C. Cells from the control cultures were harvested after 24 hours of incubation [BT]. Biofilms were harvested from 96 well plates after incubation for 36 hours [B36] and 60 hours [B60]. |
(B60) A fresh colony grown on an LB plate was used to inoculate 10 ml of LB and grown for 10 hoursat 30°C. This culture wasused to inoculate 10 ml of MSgg medium (S.S. Branda et al., J Bacteriol 186, 3970, Jun, 2004) and incubated with vigorous shaking. The cultures in MSgg were diluted to the same extent in 96 wells microtiterplates (5 μl for 1.5 ml of medium) and incubated without shaking at 30°C. Cells from the control cultures were harvested after 24 hours of incubation [BT]. Biofilms were harvested from 96 well plates after incubation for 36 hours [B36] and 60 hours [B60]. | |
(BT) A fresh colony grown on an LB plate was used to inoculate 10 ml of LB and grown for 10 hoursat 30°C. This culture wasused to inoculate 10 ml of MSgg medium (S.S. Branda et al., J Bacteriol 186, 3970, Jun, 2004) and incubated with vigorous shaking. The cultures in MSgg were diluted to the same extent in 96 wells microtiterplates (5 μl for 1.5 ml of medium) and incubated without shaking at 30°C. Cells from the control cultures were harvested after 24 hours of incubation [BT]. Biofilms were harvested from 96 well plates after incubation for 36 hours [B36] and 60 hours [B60]. | |
(ferm) Cells were grown in a synthetic medium (E. Härtig, A. Hartmann, M. Schätzle, A. M. Albertini, D. Jahn, Appl Environ Microbiol 72, 5260, 2006) at 37 °C. For aerobic growth, an overnight culture was used to inoculate 100 ml of the synthetic medium to a starting OD578 of 0.05. The culture was then incubated in a 500 ml baffled flask with shaking at 250 rpm [aero]. Anaerobic growth was carried out (i) in the presence of 10 mM potassium nitrate (nitrate respiration) [nit]; or (ii) in the absence of 10 mM postassium nitrate (fermentative growth) [ferm]. The procedure for anaerobic growth was: medium was inoculated to an OD578 nm of 0.1 in flasks completely filled with medium and sealed with rubber stoppers. They were shaken at 100 rpm to minimize cell aggregation. These cultures were inoculated aerobically with an aerobically grown overnight culture. Anaerobic conditions were achieved in the stoppered flasks after a short time through the consumption of residual oxygen. Cells were harvested during the exponential growth phase. | |
(Gly) A 5 ml aliquot of LB medium was inoculated using frozen culture stocks. After a few hours growth at 37°C, precultures were prepared by inoculating 5 ml of M9 with this LB culture at several different dilutions usually ranging from 500- to 2000-fold. The dilution range was chosen so that one of these precultures had grown to and OD600 of 0.5 - 1.0 after overnight inculation. The chosen M9 medium precultures [at OD600 of 0.5 - 1.0] were used to inoculate 100 mL of M9 medium in 500 mL non-baffled shake flasks to an OD600 of 0.02. Filter-sterilized carbon sources were added separately to the medium M9 at following concentration: D-Glucose 3g/L[Glu], L-Malic acid 4.5g/L[Mal], L-Malic acid + D-Glucose 3 and 2g/L[M+G], D-Fructose 3g/L[Fru], D-Gluconate 4g/L[Glucon], Pyruvate 6g/L[Pyr], Glycerol 6g/L[Gly], Glutamic acid + Succinic acid 2 and 2g/L[G+S]. Where necessary, carbon source solutions were pH neutralized with 4 M NaOH prior to addition to the medium. Cells were harvested during the exponential growth phase. | |
(LoTm) Cells were grown in Spizizen’s minimal medium (SMM) (C. Anagnostopoulos, J. Spizizen, J Bacteriol 81, 741, May, 1961) with vigorous agitation. The control culture was grown at 37 °C [SMMPr]. For growth at high or low temperatures, pre-cultures were grown at 37 °C, diluted to an OD578nm of 0.1 and subsequently transferred to 51 °C [HiTm] and 16 °C [LoTm], respectively. For the growth at high salinity, the salinity of the medium was adjusted by adding NaCl (5 M stock solution) to produce a final concentration of 1.2 M [HiOs]. | |
(nit) Cells were grown in a synthetic medium (E. Härtig, A. Hartmann, M. Schätzle, A. M. Albertini, D. Jahn, Appl Environ Microbiol 72, 5260, 2006) at 37 °C. For aerobic growth, an overnight culture was used to inoculate 100 ml of the synthetic medium to a starting OD578 of 0.05. The culture was then incubated in a 500 ml baffled flask with shaking at 250 rpm [aero]. Anaerobic growth was carried out (i) in the presence of 10 mM potassium nitrate (nitrate respiration) [nit]; or (ii) in the absence of 10 mM postassium nitrate (fermentative growth) [ferm]. The procedure for anaerobic growth was: medium was inoculated to an OD578 nm of 0.1 in flasks completely filled with medium and sealed with rubber stoppers. They were shaken at 100 rpm to minimize cell aggregation. These cultures were inoculated aerobically with an aerobically grown overnight culture. Anaerobic conditions were achieved in the stoppered flasks after a short time through the consumption of residual oxygen. Cells were harvested during the exponential growth phase. | |
(Pyr) A 5 ml aliquot of LB medium was inoculated using frozen culture stocks. After a few hours growth at 37°C, precultures were prepared by inoculating 5 ml of M9 with this LB culture at several different dilutions usually ranging from 500- to 2000-fold. The dilution range was chosen so that one of these precultures had grown to and OD600 of 0.5 - 1.0 after overnight inculation. The chosen M9 medium precultures [at OD600 of 0.5 - 1.0] were used to inoculate 100 mL of M9 medium in 500 mL non-baffled shake flasks to an OD600 of 0.02. Filter-sterilized carbon sources were added separately to the medium M9 at following concentration: D-Glucose 3g/L[Glu], L-Malic acid 4.5g/L[Mal], L-Malic acid + D-Glucose 3 and 2g/L[M+G], D-Fructose 3g/L[Fru], D-Gluconate 4g/L[Glucon], Pyruvate 6g/L[Pyr], Glycerol 6g/L[Gly], Glutamic acid + Succinic acid 2 and 2g/L[G+S]. Where necessary, carbon source solutions were pH neutralized with 4 M NaOH prior to addition to the medium. Cells were harvested during the exponential growth phase. | |
(S0) Cells were grown in CH medium at 37°C and sporulation was induced by resuspension in warm sporulation medium as described by Sterlini and Mandelstam (J. M. Sterlini, J. Mandelstam, Biochem J 113, 29, Jun, 1969). The initiation of sporulation was designated T0, the time of resuspension. Samples were harvested at hourly intervals for 6 hours [S0 to S6] for the first set of experiments and for 8 hours [S0 to S8] for a second set of experiments. | |
Name | yvgJ |