CRISPRon(v1.0): CRISPR-Cas9 guide efficiency prediction
Feedback
Please type in the nature of problem in the form below and press submit.
Citing CRISPRon
If you are using the results of the CRISPRon in your publication, please cite:
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
Xiang X†, Corsi GI†, Anthon C†, Qu K†, Pan X, Liang X, Han P, Dong Z, Liu L, Zhong J, Ma T, Wang J, Zhang X, Jiang H, Xu F, Liu X, Xu X, Wang J, Yang H, Bolund L, Church GM, Lin L, Gorodkin J*, Luo Y*
Nature Communications 2021, 12(1)
[ Paper | Webserver | Software ]
SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance
Kim HK, Kim Y, Lee S, Min S, Bae JY, Choi JW, Park J, Jung D, Yoon S, Kim HH*
Sci Adv. 2019 Nov 6;5(11):eaax9249. eCollection 2019 Nov
[ PubMed | Paper ]
CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters
Alkan F, Wenzel A, Anthon C, Havgaard JH, Gorodkin J*
Genome Biol. 2018 Oct 26;19(1):177
[ PubMed | Paper | Webserver | Software ]
Feedback
We greatly appreciate your comments. Open Feedback form in a new tab. Alternatively you can E-mail us with your questions and comments.